BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 16961086)

  • 1. Spinal cord-fragment interactions following burst fracture: an in vitro model.
    Hall RM; Oakland RJ; Wilcox RK; Barton DC
    J Neurosurg Spine; 2006 Sep; 5(3):243-50. PubMed ID: 16961086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of bone fragment size and cerebrospinal fluid on spinal cord deformation during trauma: an ex vivo study.
    Persson C; McLure SW; Summers J; Hall RM
    J Neurosurg Spine; 2009 Apr; 10(4):315-23. PubMed ID: 19441988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dynamic study of thoracolumbar burst fractures.
    Wilcox RK; Boerger TO; Allen DJ; Barton DC; Limb D; Dickson RA; Hall RM
    J Bone Joint Surg Am; 2003 Nov; 85(11):2184-9. PubMed ID: 14630851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure changes in spinal canal and evaluation of spinal cord injuries in spinal section subjected to impact.
    Xie B; Wu M; Yang J
    Chin J Traumatol; 2001 Aug; 4(3):175-9. PubMed ID: 11835726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of cerebrospinal fluid on the biomechanics of spinal cord: an ex vivo bovine model using bovine and physical surrogate spinal cord.
    Jones CF; Kroeker SG; Cripton PA; Hall RM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):E580-8. PubMed ID: 18670325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of bone fragment impact velocity on biomechanical parameters related to spinal cord injury: a finite element study.
    Khuyagbaatar B; Kim K; Hyuk Kim Y
    J Biomech; 2014 Aug; 47(11):2820-5. PubMed ID: 24891036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of fluid-structure interaction in spinal trauma models.
    Persson C; Summers J; Hall RM
    J Neurotrauma; 2011 Jan; 28(1):113-25. PubMed ID: 21047151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dynamic investigation of the burst fracture process using a combined experimental and finite element approach.
    Wilcox RK; Allen DJ; Hall RM; Limb D; Barton DC; Dickson RA
    Eur Spine J; 2004 Oct; 13(6):481-8. PubMed ID: 14714241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Instrumented artificial spinal cord for human cervical pressure measurement.
    Pintar FA; Schlick MB; Yoganandan N; Maiman DJ
    Biomed Mater Eng; 1996; 6(3):219-29. PubMed ID: 8922266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Biomechanical behaviors of cervical spinal cord injury related to various bone fragment impact velocities: a finite element study].
    Duan S; Zhu ZQ; Wang KF; Liu CJ; Xu S; Xia WW; Liu HY
    Zhonghua Yi Xue Za Zhi; 2018 Mar; 98(11):837-841. PubMed ID: 29609266
    [No Abstract]   [Full Text] [Related]  

  • 11. Pathomechanical analysis of thoracolumbar burst fracture reduction. A calf spine model.
    Cain JE; DeJong JT; Dinenberg AS; Stefko RM; Platenburg RC; Lauerman WC
    Spine (Phila Pa 1976); 1993 Sep; 18(12):1647-54. PubMed ID: 8235845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid cadaveric/surrogate model of thoracolumbar spine injury due to simulated fall from height.
    Ivancic PC
    Accid Anal Prev; 2013 Oct; 59():185-91. PubMed ID: 23792617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Importance of greenstick lamina fractures in low lumbar burst fractures.
    Ozturk C; Ersozlu S; Aydinli U
    Int Orthop; 2006 Aug; 30(4):295-8. PubMed ID: 16501977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic biomechanics of spinal cord injury - How injuries happen in people and how animal models have informed our understanding.
    Mattucci S; Speidel J; Liu J; Kwon BK; Tetzlaff W; Oxland TR
    Clin Biomech (Bristol, Avon); 2019 Apr; 64():58-68. PubMed ID: 29685426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiology of spinal cord injury after acute odontoid fractures.
    Harrop JS; Sharan AD; Przybylski GJ
    Neurosurg Focus; 2000 Jun; 8(6):e4. PubMed ID: 16859273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of single and incremental impact approaches for producing experimental thoracolumbar burst fractures.
    Wang XY; Dai LY; Xu HZ; Chi YL
    J Neurosurg Spine; 2007 Aug; 7(2):199-204. PubMed ID: 17688060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete neurologic recovery of spinal cord injury after posterior transpedicular reconstruction for traumatic lumbar burst fracture.
    Howard BM; Sribnick EA; Dhall SS
    Spine J; 2013 Feb; 13(2):204-5. PubMed ID: 23265939
    [No Abstract]   [Full Text] [Related]  

  • 18. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The posterior longitudinal ligament and peridural (epidural) membrane.
    Loughenbury PR; Wadhwani S; Soames RW
    Clin Anat; 2006 Sep; 19(6):487-92. PubMed ID: 16283649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thoracolumbar spine fractures with neurologic deficit.
    Chapman JR; Anderson PA
    Orthop Clin North Am; 1994 Oct; 25(4):595-612. PubMed ID: 8090473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.