These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16961223)

  • 1. [Study on near-infrared absorption mechanism of alkali lignin].
    Wu XS; Xie YM; Liu HB; Wu H
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jun; 26(6):1031-3. PubMed ID: 16961223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignin structural variation in hardwood species.
    Santos RB; Capanema EA; Balakshin MY; Chang HM; Jameel H
    J Agric Food Chem; 2012 May; 60(19):4923-30. PubMed ID: 22533315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural characterization of lignin in the process of cooking of cornstalk with solid alkali and active oxygen.
    Yang Q; Shi J; Lin L; Zhuang J; Pang C; Xie T; Liu Y
    J Agric Food Chem; 2012 May; 60(18):4656-61. PubMed ID: 22515597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L).
    Jiang B; Chen H; Zhao H; Wu W; Jin Y
    Int J Biol Macromol; 2020 Nov; 163():694-701. PubMed ID: 32645494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using near infrared spectroscopy to predict the lignin content and monosaccharide compositions of Pinus radiata wood cell walls.
    Fahey LM; Nieuwoudt MK; Harris PJ
    Int J Biol Macromol; 2018 Jul; 113():507-514. PubMed ID: 29458099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Determination of holocellulose and lignin content in Chinese fir by near infrared spectroscopy].
    Huang AM; Jiang ZH; Li GY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1328-31. PubMed ID: 17944406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellulose structure and lignin distribution in normal and compression wood of the Maidenhair tree (Ginkgo biloba L.).
    Andersson S; Wang Y; Pönni R; Hänninen T; Mononen M; Ren H; Serimaa R; Saranpää P
    J Integr Plant Biol; 2015 Apr; 57(4):388-95. PubMed ID: 25740619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Milled wood lignin: a linear oligomer.
    Crestini C; Melone F; Sette M; Saladino R
    Biomacromolecules; 2011 Nov; 12(11):3928-35. PubMed ID: 21928799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid prediction of solid wood lignin content using transmittance near-infrared spectroscopy.
    Yeh TF; Chang HM; Kadla JF
    J Agric Food Chem; 2004 Mar; 52(6):1435-9. PubMed ID: 15030192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yellowing and IR-changes of spruce wood as result of UV-irradiation.
    Müller U; Rätzsch M; Schwanninger M; Steiner M; Zöbl H
    J Photochem Photobiol B; 2003 Feb; 69(2):97-105. PubMed ID: 12633982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of near infrared spectroscopy in analysis of wood properties].
    Yao S; Pu JW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Apr; 29(4):974-8. PubMed ID: 19626884
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of milled wood lignin (MWL) in Loblolly pine stem wood, residue, and bark.
    Huang F; Singh PM; Ragauskas AJ
    J Agric Food Chem; 2011 Dec; 59(24):12910-6. PubMed ID: 22141335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part II: hardwood.
    Tsuchikawa S; Siesler HW
    Appl Spectrosc; 2003 Jun; 57(6):675-81. PubMed ID: 14658701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared spectroscopic investigation of the hydrothermal degradation mechanism of wood as an analogue of archaeological wood. Part II: hardwood.
    Inagaki T; Mitsui K; Tsuchikawa S
    Appl Spectrosc; 2009 Jul; 63(7):753-8. PubMed ID: 19589212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and evaluation of golpata fronds as pulping raw materials.
    Jahan MS; Chowdhury DA; Islam MK
    Bioresour Technol; 2006 Feb; 97(3):401-6. PubMed ID: 15927462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution via Dilute Acid Pretreatment.
    Shi Z; Yang Q; Kuga S; Matsumoto Y
    J Agric Food Chem; 2015 Jul; 63(27):6113-9. PubMed ID: 26101792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl.
    Zhang Y; Yang L; Wang D; Li D
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1193-1202. PubMed ID: 28958820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility of near-infrared spectroscopy for on-line grading of sawn lumber.
    Fujimoto T; Kurata Y; Matsumoto K; Tsuchikawa S
    Appl Spectrosc; 2010 Jan; 64(1):92-9. PubMed ID: 20132603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-infrared spectroscopic monitoring of the diffusion process of deuterium-labeled molecules in wood. Part I: softwood.
    Tsuchikawa S; Siesler HW
    Appl Spectrosc; 2003 Jun; 57(6):667-74. PubMed ID: 14658700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.