These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 1696130)

  • 1. Monoclonal antibody studies suggest a catalytic site at the interface between domains in creatine kinase.
    Morris GE; Cartwright AJ
    Biochim Biophys Acta; 1990 Jul; 1039(3):318-22. PubMed ID: 1696130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural changes in the C-terminal region of human brain creatine kinase studied with monoclonal antibodies.
    Nguyen thi Man ; Cartwright AJ; Osborne M; Morris GE
    Biochim Biophys Acta; 1991 Jan; 1076(2):245-51. PubMed ID: 1705443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monoclonal antibody studies of creatine kinase. Antibody-binding sites in the N-terminal region of creatine kinase and effects of antibody on enzyme refolding.
    Morris GE; Frost LC; Newport PA; Hudson N
    Biochem J; 1987 Nov; 248(1):53-9. PubMed ID: 3435448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes at the N-terminus of human brain creatine kinase during a transition between inactive folding intermediate and active enzyme.
    Morris GE; Man NT
    Biochim Biophys Acta; 1992 Apr; 1120(2):233-8. PubMed ID: 1373324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monoclonal antibody studies of creatine kinase. The ART epitope: evidence for an intermediate in protein folding.
    Morris GE
    Biochem J; 1989 Jan; 257(2):461-9. PubMed ID: 2467657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP binding site of mitochondrial creatine kinase. Affinity labelling of Asp-335 with C1RATP.
    James P; Wyss M; Lutsenko S; Wallimann T; Carafoli E
    FEBS Lett; 1990 Oct; 273(1-2):139-43. PubMed ID: 2226844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The binding of monoclonal and polyclonal antibodies to the Ca2(+)-ATPase of sarcoplasmic reticulum: effects on interactions between ATPase molecules.
    Molnar E; Seidler NW; Jona I; Martonosi AN
    Biochim Biophys Acta; 1990 Apr; 1023(2):147-67. PubMed ID: 1691656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunoassay of muscle-specific creatine kinase with a monoclonal antibody and application to myogenesis and muscular dystrophy.
    Morris GE; Head LP
    Biochem J; 1983 Aug; 213(2):417-25. PubMed ID: 6615444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK.
    Stolz M; Wallimann T
    J Cell Sci; 1998 May; 111 ( Pt 9)():1207-16. PubMed ID: 9547297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular heterogeneity of creatine kinase isoenzymes.
    Perryman MB; Strauss AW; Buettner TL; Roberts R
    Biochim Biophys Acta; 1983 Sep; 747(3):284-90. PubMed ID: 6615846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of human muscle creatine kinase with glutaraldehyde preferentially increases the immunogenicity of the native conformation and permits production of high-affinity monoclonal antibodies which recognize two distinct surface epitopes.
    Man N; Cartwright AJ; Andrews KM; Morris GE
    J Immunol Methods; 1989 Dec; 125(1-2):251-9. PubMed ID: 2481696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limited proteolysis of creatine kinase. Implications for three-dimensional structure and for conformational substrates.
    Wyss M; James P; Schlegel J; Wallimann T
    Biochemistry; 1993 Oct; 32(40):10727-35. PubMed ID: 8399219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophosphorylation of creatine kinase: characterization and identification of a specifically phosphorylated peptide.
    Hemmer W; Furter-Graves EM; Frank G; Wallimann T; Furter R
    Biochim Biophys Acta; 1995 Sep; 1251(2):81-90. PubMed ID: 7669815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific proteolytic modification of creatine kinase isoenzymes. Implication of C-terminal involvement in enzymic activity but not in subunit-subunit recognition.
    Lebherz HG; Burke T; Shackelford JE; Strickler JE; Wilson KJ
    Biochem J; 1986 Jan; 233(1):51-6. PubMed ID: 3006663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development and application of CK-MB specific monoclonal antibodies].
    Chen Z; Zhou G; Xu W; Zheng X; Tong X; Ke Q; Song L; Ge S
    Sheng Wu Gong Cheng Xue Bao; 2017 Jan; 33(1):141-150. PubMed ID: 28959871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monovalent antibodies against MM-creatine kinase remove the M line from myofibrils.
    Wallimann T; Pelloni G; Turner DC; Eppenberger HM
    Proc Natl Acad Sci U S A; 1978 Sep; 75(9):4296-300. PubMed ID: 360217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle.
    Wallimann T; Turner DC; Eppenberger HM
    J Cell Biol; 1977 Nov; 75(2 Pt 1):297-317. PubMed ID: 264112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification by protein microsequencing of a proteinase-V8-cleavage site in a folding intermediate of chick muscle creatine kinase.
    Morris GE; Jackson PJ
    Biochem J; 1991 Dec; 280 ( Pt 3)(Pt 3):809-11. PubMed ID: 1684894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen/deuterium exchange studies of native rabbit MM-CK dynamics.
    Mazon H; Marcillat O; Forest E; Vial C
    Protein Sci; 2004 Feb; 13(2):476-86. PubMed ID: 14739330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phosphocreatine shuttle of sea urchin sperm: flagellar creatine kinase resulted from a gene triplication.
    Wothe DD; Charbonneau H; Shapiro BM
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5203-7. PubMed ID: 2367531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.