BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16961320)

  • 1. Molecular orientation distributions in a biaxially oriented poly(L-lactic acid) film determined by polarized Raman spectroscopy.
    Tanaka M; Young RJ
    Biomacromolecules; 2006 Sep; 7(9):2575-82. PubMed ID: 16961320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): effects of biaxial orientation.
    Tsuji H; Ogiwara M; Saha SK; Sakaki T
    Biomacromolecules; 2006 Jan; 7(1):380-7. PubMed ID: 16398539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well-homo-crystallized blend and nonblended films.
    Tsuji H
    Biomaterials; 2003 Feb; 24(4):537-47. PubMed ID: 12437948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mineralization of hydroxyapatite in electrospun nanofibrous poly(L-lactic acid) scaffolds.
    Chen J; Chu B; Hsiao BS
    J Biomed Mater Res A; 2006 Nov; 79(2):307-17. PubMed ID: 16817203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic deformation of amorphous poly(L/DL-lactide): structure evolution and physical properties.
    Pluta M; Galeski A
    Biomacromolecules; 2007 Jun; 8(6):1836-43. PubMed ID: 17472336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. spherulite growth of low-molecular-weight poly(lactic acid)s from the melt.
    Tsuji H; Tezuka Y
    Biomacromolecules; 2004; 5(4):1181-6. PubMed ID: 15244428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water barrier properties in biaxially drawn poly(lactic acid) films.
    Delpouve N; Stoclet G; Saiter A; Dargent E; Marais S
    J Phys Chem B; 2012 Apr; 116(15):4615-25. PubMed ID: 22432898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro hydrolysis of blends from enantiomeric poly(lactide)s. 3. Homocrystallized and amorphous blend films.
    Tsuji H; Del Carpio CA
    Biomacromolecules; 2003; 4(1):7-11. PubMed ID: 12523839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteoblast adhesion on poly(L-lactic acid)/polystyrene demixed thin film blends: effect of nanotopography, surface chemistry, and wettability.
    Lim JY; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomacromolecules; 2005; 6(6):3319-27. PubMed ID: 16283761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competitive stereocomplexation, homocrystallization, and polymorphic crystalline transition in poly(L-lactic acid)/poly(D-lactic acid) racemic blends: molecular weight effects.
    Pan P; Han L; Bao J; Xie Q; Shan G; Bao Y
    J Phys Chem B; 2015 May; 119(21):6462-70. PubMed ID: 25940864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled functionalization of multiwalled carbon nanotubes with various molecular-weight poly(L-lactic acid).
    Chen GX; Kim HS; Park BH; Yoon JS
    J Phys Chem B; 2005 Dec; 109(47):22237-43. PubMed ID: 16853895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of plasmid DNA onto N,N'- (dimethylamino)ethyl-methacrylate graft-polymerized poly-L-lactic acid film surface for promotion of in-situ gene delivery.
    Jiang T; Chang J; Wang C; Ding Z; Chen J; Zhang J; Kang ET
    Biomacromolecules; 2007 Jun; 8(6):1951-7. PubMed ID: 17472337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio elasticity of poly(lactic acid) crystals.
    Lin T; Liu XY; He C
    J Phys Chem B; 2010 Mar; 114(9):3133-9. PubMed ID: 20151705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Hydrolysis of poly(L-lactic acid) fibers and formation of low crystalline apatite on their surface by a biomimetic process].
    Yuan X; Mak AF; He F
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):404-7. PubMed ID: 14564999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Low- and Mid-Frequency Raman Spectroscopy to Characterize the Amorphous-Crystalline Transformation of Indomethacin.
    Larkin PJ; Wasylyk J; Raglione M
    Appl Spectrosc; 2015 Nov; 69(11):1217-28. PubMed ID: 26647045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural study of poly(L-lactic acid) spherulites.
    Gazzano M; Focarete ML; Riekel C; Scandola M
    Biomacromolecules; 2004; 5(2):553-8. PubMed ID: 15003020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental (IR/Raman and 1H/13C NMR) and theoretical (DFT) studies of the preferential conformations adopted by L-lactic acid oligomers and poly(L-lactic acid) homopolymer.
    Jarmelo S; Marques DA; Simões PN; Carvalho RA; Batista CM; Araujo-Andrade C; Gil MH; Fausto R
    J Phys Chem B; 2012 Jan; 116(1):9-21. PubMed ID: 22082026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamental study on improvement of piezoelectricity of poly(ι-lactic acid) and its application to film actuators.
    Tajitsu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Aug; 60(8):1625-9. PubMed ID: 25004534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoblock poly(lactic acid): synthesis via solid-state polycondensation of a stereocomplexed mixture of poly(L-lactic acid) and poly(D-lactic acid).
    Fukushima K; Furuhashi Y; Sogo K; Miura S; Kimura Y
    Macromol Biosci; 2005 Jan; 5(1):21-9. PubMed ID: 15633160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic degradation of PLLA-PEOz-PLLA triblock copolymers.
    Wang CH; Fan KR; Hsiue GH
    Biomaterials; 2005 Jun; 26(16):2803-11. PubMed ID: 15603776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.