These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 16961323)
1. Incorporation of alpha-amylase enzyme and a bioactive filler into hydrophilic, partially degradable, and bioactive cements (HDBCs) as a new approach to tailor simultaneously their degradation and bioactive behavior. Boesel LF; Azevedo HS; Reis RL Biomacromolecules; 2006 Sep; 7(9):2600-9. PubMed ID: 16961323 [TBL] [Abstract][Full Text] [Related]
2. Degradation studies of hydrophilic, partially degradable and bioactive cements (HDBCs) incorporating chemically modified starch. Mendes AC; Boesel LF; Reis RL J Mater Sci Mater Med; 2012 Mar; 23(3):667-76. PubMed ID: 22286227 [TBL] [Abstract][Full Text] [Related]
3. The in vitro bioactivity of two novel hydrophilic, partially degradable bone cements. Boesel LF; Cachinho SC; Fernandes MH; Reis RL Acta Biomater; 2007 Mar; 3(2):175-82. PubMed ID: 17166784 [TBL] [Abstract][Full Text] [Related]
4. Encapsulation of alpha-amylase into starch-based biomaterials: an enzymatic approach to tailor their degradation rate. Azevedo HS; Reis RL Acta Biomater; 2009 Oct; 5(8):3021-30. PubMed ID: 19427418 [TBL] [Abstract][Full Text] [Related]
5. In vitro assessment of the enzymatic degradation of several starch based biomaterials. Azevedo HS; Gama FM; Reis RL Biomacromolecules; 2003; 4(6):1703-12. PubMed ID: 14606899 [TBL] [Abstract][Full Text] [Related]
6. Aluminum-free glass-ionomer bone cements with enhanced bioactivity and biodegradability. Gomes FO; Pires RA; Reis RL Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1361-70. PubMed ID: 23827583 [TBL] [Abstract][Full Text] [Related]
7. Acrylic formulations containing bioactive and biodegradable fillers to be used as bone cements: properties and biocompatibility assessment. Lopes PP; Garcia MP; Fernandes MH; Fernandes MH Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1289-99. PubMed ID: 23827574 [TBL] [Abstract][Full Text] [Related]
8. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Wu F; Wei J; Guo H; Chen F; Hong H; Liu C Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897 [TBL] [Abstract][Full Text] [Related]
9. Fiber-enriched double-setting calcium phosphate bone cement. dos Santos LA; Carrodéguas RG; Boschi AO; Fonseca de Arruda AC J Biomed Mater Res A; 2003 May; 65(2):244-50. PubMed ID: 12734819 [TBL] [Abstract][Full Text] [Related]
10. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone. Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446 [TBL] [Abstract][Full Text] [Related]
11. Introduction of gelatin microspheres into an injectable calcium phosphate cement. Habraken WJ; de Jonge LT; Wolke JG; Yubao L; Mikos AG; Jansen JA J Biomed Mater Res A; 2008 Dec; 87(3):643-55. PubMed ID: 18189298 [TBL] [Abstract][Full Text] [Related]
12. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Xie XH; Wang XL; Zhang G; He YX; Wang XH; Liu Z; He K; Peng J; Leng Y; Qin L Biomed Mater; 2010 Oct; 5(5):054109. PubMed ID: 20876954 [TBL] [Abstract][Full Text] [Related]
13. Effect of calcium carbonate on hardening, physicochemical properties, and in vitro degradation of injectable calcium phosphate cements. Sariibrahimoglu K; Leeuwenburgh SC; Wolke JG; Yubao L; Jansen JA J Biomed Mater Res A; 2012 Mar; 100(3):712-9. PubMed ID: 22213632 [TBL] [Abstract][Full Text] [Related]
14. Effect of added gelatin on the properties of calcium phosphate cement. Bigi A; Bracci B; Panzavolta S Biomaterials; 2004 Jun; 25(14):2893-9. PubMed ID: 14962568 [TBL] [Abstract][Full Text] [Related]
15. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related]
16. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation. Alge DL; Santa Cruz G; Goebel WS; Chu TM Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655 [TBL] [Abstract][Full Text] [Related]
17. Hydrophilic matrices to be used as bioactive and degradable bone cements. Boesel LF; Reis RL J Mater Sci Mater Med; 2004 Apr; 15(4):503-6. PubMed ID: 15332625 [TBL] [Abstract][Full Text] [Related]
18. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride. Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530 [TBL] [Abstract][Full Text] [Related]
19. New bioactive glass-ceramic: synthesis and application in PMMA bone cement composites. Abd Samad H; Jaafar M; Othman R; Kawashita M; Abdul Razak NH Biomed Mater Eng; 2011; 21(4):247-58. PubMed ID: 22182792 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Zuo Y; Yang F; Wolke JG; Li Y; Jansen JA Acta Biomater; 2010 Apr; 6(4):1238-47. PubMed ID: 19861181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]