These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 16961323)
21. Polymer--calcium phosphate cement composites for bone substitutes. Mickiewicz RA; Mayes AM; Knaack D J Biomed Mater Res; 2002 Sep; 61(4):581-92. PubMed ID: 12115448 [TBL] [Abstract][Full Text] [Related]
22. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Sanzana ES; Navarro M; Macule F; Suso S; Planell JA; Ginebra MP Acta Biomater; 2008 Nov; 4(6):1924-33. PubMed ID: 18539102 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of an orthotopically implanted calcium phosphate cement containing gelatin microparticles. Link DP; van den Dolder J; van den Beucken JJ; Habraken W; Soede A; Boerman OC; Mikos AG; Jansen JA J Biomed Mater Res A; 2009 Aug; 90(2):372-9. PubMed ID: 18521889 [TBL] [Abstract][Full Text] [Related]
24. Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures. Fernández E; Vlad MD; Gel MM; López J; Torres R; Cauich JV; Bohner M Biomaterials; 2005 Jun; 26(17):3395-404. PubMed ID: 15621228 [TBL] [Abstract][Full Text] [Related]
25. In vitro surface reaction layer formation and dissolution of calcium phosphate cement-bioactive glass composites. Liu C; Chen CW; Ducheyne P Biomed Mater; 2008 Sep; 3(3):034111. PubMed ID: 18689928 [TBL] [Abstract][Full Text] [Related]
26. Characterization of a novel calcium phosphate/sulphate bone cement. Nilsson M; Fernández E; Sarda S; Lidgren L; Planell JA J Biomed Mater Res; 2002 Sep; 61(4):600-7. PubMed ID: 12115450 [TBL] [Abstract][Full Text] [Related]
27. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity. Dagang G; Kewei X; Haoliang S; Yong H J Biomed Mater Res A; 2006 May; 77(2):313-23. PubMed ID: 16402384 [TBL] [Abstract][Full Text] [Related]
28. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement. Alge DL; Chu TM J Biomed Mater Res A; 2010 Aug; 94(2):547-55. PubMed ID: 20186776 [TBL] [Abstract][Full Text] [Related]
29. Setting, hardening and resorption of calcium phosphate hydraulic cements. Lemaitre J; Munting E; Mirtchi AA Rev Stomatol Chir Maxillofac; 1992; 93(3):163-5. PubMed ID: 1323872 [TBL] [Abstract][Full Text] [Related]
30. Biologically mediated resorption of brushite cement in vitro. Grover LM; Gbureck U; Wright AJ; Tremayne M; Barralet JE Biomaterials; 2006 Apr; 27(10):2178-85. PubMed ID: 16337265 [TBL] [Abstract][Full Text] [Related]
31. Development of a degradable cement of calcium phosphate and calcium sulfate composite for bone reconstruction. Guo H; Wei J; Liu CS Biomed Mater; 2006 Dec; 1(4):193-7. PubMed ID: 18458405 [TBL] [Abstract][Full Text] [Related]
32. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694 [TBL] [Abstract][Full Text] [Related]
33. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Wu F; Su J; Wei J; Guo H; Liu C Biomed Mater; 2008 Dec; 3(4):044105. PubMed ID: 19029607 [TBL] [Abstract][Full Text] [Related]
34. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Espigares I; Elvira C; Mano JF; Vázquez B; San RJ; Reis RL Biomaterials; 2002 Apr; 23(8):1883-95. PubMed ID: 11950059 [TBL] [Abstract][Full Text] [Related]
35. Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. Boesel LF; Mano JF; Reis RL J Mater Sci Mater Med; 2004 Jan; 15(1):73-83. PubMed ID: 15338594 [TBL] [Abstract][Full Text] [Related]
36. Fiber reinforced calcium phosphate cements -- on the way to degradable load bearing bone substitutes? Krüger R; Groll J Biomaterials; 2012 Sep; 33(25):5887-900. PubMed ID: 22632767 [TBL] [Abstract][Full Text] [Related]
37. Enzymatic degradation of starch thermoplastic blends using samples of different thickness. Araújo MA; Cunha AM; Mota M J Mater Sci Mater Med; 2009 Feb; 20(2):607-14. PubMed ID: 18853238 [TBL] [Abstract][Full Text] [Related]
38. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
39. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications. Vaz CM; Fossen M; van Tuil RF; de Graaf LA; Reis RL; Cunha AM J Biomed Mater Res A; 2003 Apr; 65(1):60-70. PubMed ID: 12635155 [TBL] [Abstract][Full Text] [Related]
40. Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour. Salih V; Mordan N; Abou Neel EA; Armitage DA; Jones FH; Knowles JC; Nazhat SN; Vargas-Coronado R; Cauich-Rodriguez JV Acta Biomater; 2006 Mar; 2(2):143-54. PubMed ID: 16701872 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]