These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 16961323)
41. Improved injectability and in vitro degradation of a calcium phosphate cement containing poly(lactide-co-glycolide) microspheres. Qi X; Ye J; Wang Y Acta Biomater; 2008 Nov; 4(6):1837-45. PubMed ID: 18555756 [TBL] [Abstract][Full Text] [Related]
42. Strong and bioactive composites containing nano-silica-fused whiskers for bone repair. Xu HH; Smith DT; Simon CG Biomaterials; 2004 Aug; 25(19):4615-26. PubMed ID: 15120507 [TBL] [Abstract][Full Text] [Related]
43. The effect of water uptake on the behaviour of hydrophilic cements in confined environments. Boesel LF; Reis RL Biomaterials; 2006 Nov; 27(33):5627-33. PubMed ID: 16901538 [TBL] [Abstract][Full Text] [Related]
44. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142 [TBL] [Abstract][Full Text] [Related]
45. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Xia Z; Grover LM; Huang Y; Adamopoulos IE; Gbureck U; Triffitt JT; Shelton RM; Barralet JE Biomaterials; 2006 Sep; 27(26):4557-65. PubMed ID: 16720039 [TBL] [Abstract][Full Text] [Related]
46. Introduction of enzymatically degradable poly(trimethylene carbonate) microspheres into an injectable calcium phosphate cement. Habraken WJ; Zhang Z; Wolke JG; Grijpma DW; Mikos AG; Feijen J; Jansen JA Biomaterials; 2008 Jun; 29(16):2464-76. PubMed ID: 18328556 [TBL] [Abstract][Full Text] [Related]
47. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent. Sarda S; Fernández E; Nilsson M; Balcells M; Planell JA J Biomed Mater Res; 2002 Sep; 61(4):653-9. PubMed ID: 12115456 [TBL] [Abstract][Full Text] [Related]
48. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid. Hirakata LM; Kon M; Asaoka K Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174 [TBL] [Abstract][Full Text] [Related]
49. Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Lopez-Heredia MA; Sa Y; Salmon P; de Wijn JR; Wolke JG; Jansen JA Acta Biomater; 2012 Aug; 8(8):3120-7. PubMed ID: 22588072 [TBL] [Abstract][Full Text] [Related]
50. In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder. Wu CC; Yang KC; Yang SH; Lin MH; Kuo TF; Lin FH Artif Organs; 2012 Apr; 36(4):418-28. PubMed ID: 22145803 [TBL] [Abstract][Full Text] [Related]
51. Control of crystallinity of hydrated products in a calcium phosphate bone cement. Wang X; Ye J; Wang Y; Wu X; Bai B J Biomed Mater Res A; 2007 Jun; 81(4):781-90. PubMed ID: 17226807 [TBL] [Abstract][Full Text] [Related]
52. The behavior of novel hydrophilic composite bone cements in simulated body fluids. Boesel LF; Fernandes MH; Reis RL J Biomed Mater Res B Appl Biomater; 2004 Aug; 70(2):368-77. PubMed ID: 15264321 [TBL] [Abstract][Full Text] [Related]
53. Influence of ibuprofen addition on the properties of a bioactive bone cement. Lopes PP; Silva MS; Fernandes MH J Mater Sci Mater Med; 2013 Aug; 24(8):2067-76. PubMed ID: 23677434 [TBL] [Abstract][Full Text] [Related]
54. Acrylic bone cement and starch: Botanical variety impact on curing parameters and degradability. Aubrun-Fillâtre C; Monchau F; Hivart P Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1328-34. PubMed ID: 27612833 [TBL] [Abstract][Full Text] [Related]
55. Viscoelastic and biological performance of low-modulus, reactive calcium phosphate-filled, degradable, polymeric bone adhesives. Abou Neel EA; Salih V; Revell PA; Young AM Acta Biomater; 2012 Jan; 8(1):313-20. PubMed ID: 21884829 [TBL] [Abstract][Full Text] [Related]
56. Studies on alpha-amylase induced degradation of binary polymeric blends of crosslinked starch and pectin. Bajpai AK; Shrivastava J J Mater Sci Mater Med; 2007 May; 18(5):765-77. PubMed ID: 17143735 [TBL] [Abstract][Full Text] [Related]
57. Changes in morphology of starch-based prothestic thermoplastic material during enzymatic degradation. Araújo MA; Cunha AM; Mota M J Biomater Sci Polym Ed; 2004; 15(10):1263-80. PubMed ID: 15559849 [TBL] [Abstract][Full Text] [Related]
58. The synergetic effect of starch and alpha amylase on the biodegradation of n-alkanes. Karimi M; Biria D Chemosphere; 2016 Jun; 152():166-72. PubMed ID: 26971168 [TBL] [Abstract][Full Text] [Related]
59. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor. Gibbs MJ; Biela A; Krause S Biosens Bioelectron; 2015 May; 67():540-5. PubMed ID: 25266253 [TBL] [Abstract][Full Text] [Related]
60. Chemically-modified polysaccharides for enzymatically-controlled oral drug delivery. Kost J; Shefer S Biomaterials; 1990 Nov; 11(9):695-8. PubMed ID: 2090305 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]