These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 16961325)

  • 1. Conformational modifications of alpha gliadin and globulin proteins upon complex coacervates formation with gum Arabic as studied by Raman microspectroscopy.
    Chourpa I; Ducel V; Richard J; Dubois P; Boury F
    Biomacromolecules; 2006 Sep; 7(9):2616-23. PubMed ID: 16961325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheological interfacial properties of plant protein-arabic gum coacervates at the oil-water interface.
    Ducel V; Richard J; Popineau Y; Boury F
    Biomacromolecules; 2005; 6(2):790-6. PubMed ID: 15762643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism.
    Sanchez C; Mekhloufi G; Renard D
    J Colloid Interface Sci; 2006 Jul; 299(2):867-73. PubMed ID: 16530214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and structure of whey protein/gum arabic coacervates.
    Weinbreck F; Tromp RH; de Kruif CG
    Biomacromolecules; 2004; 5(4):1437-45. PubMed ID: 15244462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini.
    Rousseau ME; Beaulieu L; Lefèvre T; Paradis J; Asakura T; Pézolet M
    Biomacromolecules; 2006 Sep; 7(9):2512-21. PubMed ID: 16961312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2.
    Schmitt C; da Silva TP; Bovay C; Rami-Shojaei S; Frossard P; Kolodziejczyk E; Leser ME
    Langmuir; 2005 Aug; 21(17):7786-95. PubMed ID: 16089384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex coacervation of whey proteins and gum arabic.
    Weinbreck F; de Vries R; Schrooyen P; de Kruif CG
    Biomacromolecules; 2003; 4(2):293-303. PubMed ID: 12625724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of gum Arabic, egg white protein, and their mixtures at the oil-water interface in limonene oil-in-water emulsions.
    Padala SR; Williams PA; Phillips GO
    J Agric Food Chem; 2009 Jun; 57(11):4964-73. PubMed ID: 19422219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates.
    Niu F; Kou M; Fan J; Pan W; Feng ZJ; Su Y; Yang Y; Zhou W
    Food Chem; 2018 Sep; 260():1-6. PubMed ID: 29699649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational study of globulin from rice (Oryza sativa) seeds by Fourier-transform infrared spectroscopy.
    Ellepola SW; Choi SM; Ma CY
    Int J Biol Macromol; 2005 Oct; 37(1-2):12-20. PubMed ID: 16140371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of alpha-gliadin with poly(HEMA-co-SS): structural characterization and biological implication.
    Liang L; Pinier M; Leroux JC; Subirade M
    Biopolymers; 2009 Feb; 91(2):169-78. PubMed ID: 18975377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational study of globulin from common buckwheat (Fagopyrum esculentum Moench) by Fourier transform infrared spectroscopy and differential scanning calorimetry.
    Choi SM; Ma CY
    J Agric Food Chem; 2005 Oct; 53(20):8046-53. PubMed ID: 16190669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional Raman and Raman optical activity correlation analysis of the alpha-helix-to-disordered transition in poly(L-glutamic acid).
    Ashton L; Barron LD; Hecht L; Hyde J; Blanch EW
    Analyst; 2007 May; 132(5):468-79. PubMed ID: 17471394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum arabic: Phase behavior, thermodynamic, and structural properties.
    Li Y; Zhang X; Zhao Y; Ding J; Lin S
    Food Res Int; 2018 May; 107():596-604. PubMed ID: 29580524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides.
    Jadhav SB; Bankar SB; Granström T; Ojamo H; Singhal RS; Survase SA
    Appl Microbiol Biotechnol; 2014; 98(14):6307-16. PubMed ID: 24658590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges.
    Renard D; Lavenant-Gourgeon L; Ralet MC; Sanchez C
    Biomacromolecules; 2006 Sep; 7(9):2637-49. PubMed ID: 16961328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of stable nanoparticles via electrostatic complexation between sodium caseinate and gum arabic.
    Ye A; Flanagan J; Singh H
    Biopolymers; 2006 Jun; 82(2):121-33. PubMed ID: 16453308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic interaction and complex formation between gum arabic and bovine serum albumin.
    Vinayahan T; Williams PA; Phillips GO
    Biomacromolecules; 2010 Dec; 11(12):3367-74. PubMed ID: 21067247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stabilization of model beverage cloud emulsions using protein-polysaccharide electrostatic complexes formed at the oil-water interface.
    Harnsilawat T; Pongsawatmanit R; McClements DJ
    J Agric Food Chem; 2006 Jul; 54(15):5540-7. PubMed ID: 16848543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gum arabic-chitosan complex coacervation.
    Espinosa-Andrews H; Báez-González JG; Cruz-Sosa F; Vernon-Carter EJ
    Biomacromolecules; 2007 Apr; 8(4):1313-8. PubMed ID: 17375951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.