These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16961343)

  • 1. Mechanistic studies of Hangman salophen-mediated activation of O-O bonds.
    Liu SY; Soper JD; Yang JY; Rybak-Akimova EV; Nocera DG
    Inorg Chem; 2006 Sep; 45(19):7572-4. PubMed ID: 16961343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the haloperoxidases: reversible oxygen atom transfer between bromide ion and an oxo-Mn(V) porphyrin.
    Lahaye D; Groves JT
    J Inorg Biochem; 2007 Nov; 101(11-12):1786-97. PubMed ID: 17825916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bulky bis-pocket manganese(V)-oxo corrole complex: observation of oxygen atom transfer between triply bonded Mn(V)[triple bond]O and alkene.
    Liu HY; Yam F; Xie YT; Li XY; Chang CK
    J Am Chem Soc; 2009 Sep; 131(36):12890-1. PubMed ID: 19737012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hangman salophens.
    Liu SY; Nocera DG
    J Am Chem Soc; 2005 Apr; 127(15):5278-9. PubMed ID: 15826139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic O[bond]O activation chemistry mediated by iron hangman porphyrins with a wide range of proton-donating abilities.
    Chng LL; Chang CJ; Nocera DG
    Org Lett; 2003 Jul; 5(14):2421-4. PubMed ID: 12841745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proton-directed redox control of O-O bond activation by heme hydroperoxidase models.
    Soper JD; Kryatov SV; Rybak-Akimova EV; Nocera DG
    J Am Chem Soc; 2007 Apr; 129(16):5069-75. PubMed ID: 17397153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible O-O bond cleavage and formation between Mn(IV)-peroxo and Mn(V)-oxo corroles.
    Kim SH; Park H; Seo MS; Kubo M; Ogura T; Klajn J; Gryko DT; Valentine JS; Nam W
    J Am Chem Soc; 2010 Oct; 132(40):14030-2. PubMed ID: 20845972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of cis-dihydroxylation and epoxidation of alkenes by highly H(2)O(2) efficient dinuclear manganese catalysts.
    de Boer JW; Browne WR; Brinksma J; Alsters PL; Hage R; Feringa BL
    Inorg Chem; 2007 Aug; 46(16):6353-72. PubMed ID: 17608415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocatalytic oxygen evolution from water on a Mn(III-V) dimer model catalyst--a DFT perspective.
    Busch M; Ahlberg E; Panas I
    Phys Chem Chem Phys; 2011 Sep; 13(33):15069-76. PubMed ID: 21773630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carboxylate ligands drastically enhance the rates of oxo exchange and hydrogen peroxide disproportionation by oxo manganese compounds of potential biological significance.
    Dubois L; Pécaut J; Charlot MF; Baffert C; Collomb MN; Deronzier A; Latour JM
    Chemistry; 2008; 14(10):3013-25. PubMed ID: 18293345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of an isolable, monomeric manganese(V)-oxo complex from O2 and visible light.
    Prokop KA; Goldberg DP
    J Am Chem Soc; 2012 May; 134(19):8014-7. PubMed ID: 22533822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser flash photolysis generation and kinetic studies of corrole-manganese(V)-oxo intermediates.
    Zhang R; Harischandra DN; Newcomb M
    Chemistry; 2005 Sep; 11(19):5713-20. PubMed ID: 16034998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleophilic attack of hydroxide on a Mn(V) oxo complex: a model of the O-O bond formation in the oxygen evolving complex of photosystem II.
    Gao Y; Akermark T; Liu J; Sun L; Akermark B
    J Am Chem Soc; 2009 Jul; 131(25):8726-7. PubMed ID: 19496534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of proton-coupled electron transfer in O-O bond activation.
    Rosenthal J; Nocera DG
    Acc Chem Res; 2007 Jul; 40(7):543-53. PubMed ID: 17595052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic study of copper-catalyzed aerobic oxidative coupling of arylboronic esters and methanol: insights into an organometallic oxidase reaction.
    King AE; Brunold TC; Stahl SS
    J Am Chem Soc; 2009 Apr; 131(14):5044-5. PubMed ID: 19309072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corrolazines: new frontiers in high-valent metalloporphyrinoid stability and reactivity.
    Goldberg DP
    Acc Chem Res; 2007 Jul; 40(7):626-34. PubMed ID: 17580977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation.
    Tagore R; Crabtree RH; Brudvig GW
    Inorg Chem; 2008 Mar; 47(6):1815-23. PubMed ID: 18330972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of catalytic aziridination with manganese corrole: the often postulated high-valent Mn(V) imido is not the group transfer reagent.
    Zdilla MJ; Abu-Omar MM
    J Am Chem Soc; 2006 Dec; 128(51):16971-9. PubMed ID: 17177448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed spectroscopic, thermodynamic, and kinetic studies on the protolytic equilibria of Fe(III)cydta and the activation of hydrogen peroxide.
    Brausam A; Maigut J; Meier R; Szilágyi PA; Buschmann HJ; Massa W; Homonnay Z; van Eldik R
    Inorg Chem; 2009 Aug; 48(16):7864-84. PubMed ID: 19618946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hangman corroles: efficient synthesis and oxygen reaction chemistry.
    Dogutan DK; Stoian SA; McGuire R; Schwalbe M; Teets TS; Nocera DG
    J Am Chem Soc; 2011 Jan; 133(1):131-40. PubMed ID: 21142043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.