These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 16962067)

  • 1. Critical role of the FERM domain in Pyk2 stimulated glioma cell migration.
    Lipinski CA; Tran NL; Dooley A; Pang YP; Rohl C; Kloss J; Yang Z; McDonough W; Craig D; Berens ME; Loftus JC
    Biochem Biophys Res Commun; 2006 Oct; 349(3):939-47. PubMed ID: 16962067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pyk2 FERM domain as a target to inhibit glioma migration.
    Loftus JC; Yang Z; Tran NL; Kloss J; Viso C; Berens ME; Lipinski CA
    Mol Cancer Ther; 2009 Jun; 8(6):1505-14. PubMed ID: 19509258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-tyrosine kinase CAKbeta/PYK2 is activated by binding Ca2+/calmodulin to FERM F2 alpha2 helix and thus forming its dimer.
    Kohno T; Matsuda E; Sasaki H; Sasaki T
    Biochem J; 2008 Mar; 410(3):513-23. PubMed ID: 18031286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Pyk2 FERM regulates Pyk2 complex formation and phosphorylation.
    Riggs D; Yang Z; Kloss J; Loftus JC
    Cell Signal; 2011 Jan; 23(1):288-96. PubMed ID: 20849950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The tyrosine kinase pyk2 promotes migration and invasion of glioma cells.
    Lipinski CA; Tran NL; Menashi E; Rohl C; Kloss J; Bay RC; Berens ME; Loftus JC
    Neoplasia; 2005 May; 7(5):435-45. PubMed ID: 15967096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Store-operated Ca(2+) entry regulates glioma cell migration and invasion via modulation of Pyk2 phosphorylation.
    Zhu M; Chen L; Zhao P; Zhou H; Zhang C; Yu S; Lin Y; Yang X
    J Exp Clin Cancer Res; 2014 Nov; 33(1):98. PubMed ID: 25433371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium-dependent Pyk2 activation: a role for calmodulin?
    Schaller MD
    Biochem J; 2008 Mar; 410(3):e3-4. PubMed ID: 18290763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of proline-rich tyrosine kinase 2 function induces spreading and motility of epithelial prostate cells.
    de Amicis F; Lanzino M; Kisslinger A; Calì G; Chieffi P; Andò S; Mancini FP; Tramontano D
    J Cell Physiol; 2006 Oct; 209(1):74-80. PubMed ID: 16783820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2.
    Lulo J; Yuzawa S; Schlessinger J
    Biochem Biophys Res Commun; 2009 Jun; 383(3):347-52. PubMed ID: 19358827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational Dynamics of FERM-Mediated Autoinhibition in Pyk2 Tyrosine Kinase.
    Loving HS; Underbakke ES
    Biochemistry; 2019 Sep; 58(36):3767-3776. PubMed ID: 31403288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyk2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival.
    Lim ST; Miller NL; Nam JO; Chen XL; Lim Y; Schlaepfer DD
    J Biol Chem; 2010 Jan; 285(3):1743-53. PubMed ID: 19880522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Interaction between Pyk2 and MAP4K4 Is Integrated with Glioma Cell Migration.
    Loftus JC; Yang Z; Kloss J; Dhruv H; Tran NL; Riggs DL
    J Signal Transduct; 2013; 2013():956580. PubMed ID: 24163766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of proline-rich tyrosine kinase2 (Pyk2) through C/EBPbeta is involved in PMA-induced monocyte differentiation.
    Park MH; Park SY; Kim Y
    FEBS Lett; 2008 Feb; 582(3):415-22. PubMed ID: 18198130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcineurin is essential for depolarization-induced nuclear translocation and tyrosine phosphorylation of PYK2 in neurons.
    Faure C; Corvol JC; Toutant M; Valjent E; Hvalby O; Jensen V; El Messari S; Corsi JM; Kadaré G; Girault JA
    J Cell Sci; 2007 Sep; 120(Pt 17):3034-44. PubMed ID: 17684059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural conservation in band 4.1, ezrin, radixin, moesin (FERM) domains as a guide to identify inhibitors of the proline-rich tyrosine kinase 2.
    Meurice N; Wang L; Lipinski CA; Yang Z; Hulme C; Loftus JC
    J Med Chem; 2010 Jan; 53(2):669-77. PubMed ID: 20017492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extended survival of Pyk2 or FAK deficient orthotopic glioma xenografts.
    Lipinski CA; Tran NL; Viso C; Kloss J; Yang Z; Berens ME; Loftus JC
    J Neurooncol; 2008 Nov; 90(2):181-9. PubMed ID: 18648907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Up-regulation of proline-rich tyrosine kinase 2 in non-small cell lung cancer.
    Zhang S; Qiu X; Gu Y; Wang E
    Lung Cancer; 2008 Dec; 62(3):295-301. PubMed ID: 18571765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of nuclear factor-kappaB activation by astrocyte elevated gene-1.
    Sarkar D; Park ES; Emdad L; Lee SG; Su ZZ; Fisher PB
    Cancer Res; 2008 Mar; 68(5):1478-84. PubMed ID: 18316612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation.
    Sun CK; Man K; Ng KT; Ho JW; Lim ZX; Cheng Q; Lo CM; Poon RT; Fan ST
    Carcinogenesis; 2008 Nov; 29(11):2096-105. PubMed ID: 18765415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The protein phosphatase activity of PTEN regulates SRC family kinases and controls glioma migration.
    Dey N; Crosswell HE; De P; Parsons R; Peng Q; Su JD; Durden DL
    Cancer Res; 2008 Mar; 68(6):1862-71. PubMed ID: 18339867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.