BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 16962150)

  • 41. Short monolithic columns for purification and fractionation of peptide samples for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis in proteomics.
    Moravcová D; Kahle V; Rehulková H; Chmelík J; Rehulka P
    J Chromatogr A; 2009 Apr; 1216(17):3629-36. PubMed ID: 19217112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of the human casein phosphoproteome by 2-D electrophoresis and MALDI-TOF/TOF MS reveals new phosphoforms.
    Poth AG; Deeth HC; Alewood PF; Holland JW
    J Proteome Res; 2008 Nov; 7(11):5017-27. PubMed ID: 18847231
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis.
    Chitteti BR; Peng Z
    Proteomics; 2007 May; 7(9):1473-500. PubMed ID: 17407188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fast track to a phosphoprotein sketch - MALDI-TOF characterization of TLC-based tryptic phosphopeptide maps at femtomolar detection sensitivity.
    Kochin V; Imanishi SY; Eriksson JE
    Proteomics; 2006 Nov; 6(21):5676-82. PubMed ID: 17024653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Functional characterization of two-dimensional gel-separated proteins using sequential staining.
    Wu J; Lenchik NJ; Pabst MJ; Solomon SS; Shull J; Gerling IC
    Electrophoresis; 2005 Jan; 26(1):225-37. PubMed ID: 15624177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti(4+)--IMAC enrichment and ESI-Q-TOF MS.
    Hu Y; Guo S; Li X; Ren X
    Electrophoresis; 2013 Feb; 34(4):485-92. PubMed ID: 23172588
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Comparative analysis of phosphoprotein expression using 2D-DIGE.
    Asano T; Nishiuchi T
    Methods Mol Biol; 2011; 744():225-33. PubMed ID: 21533697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomic analysis of root meristems and the effects of acetohydroxyacid synthase-inhibiting herbicides in the root of Medicago truncatula.
    Holmes P; Farquharson R; Hall PJ; Rolfe BG
    J Proteome Res; 2006 Sep; 5(9):2309-16. PubMed ID: 16944943
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping phosphoproteins in Neisseria meningitidis serogroup A.
    Bernardini G; Laschi M; Serchi T; Arena S; D'Ambrosio C; Braconi D; Scaloni A; Santucci A
    Proteomics; 2011 Apr; 11(7):1351-8. PubMed ID: 21365747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thylakoid phosphoproteins: identification of phosphorylation sites.
    Rokka A; Aro EM; Vener AV
    Methods Mol Biol; 2011; 684():171-86. PubMed ID: 20960130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Combining Metabolic ¹⁵N Labeling with Improved Tandem MOAC for Enhanced Probing of the Phosphoproteome.
    Thomas M; Huck N; Hoehenwarter W; Conrath U; Beckers GJ
    Methods Mol Biol; 2015; 1306():81-96. PubMed ID: 25930695
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology.
    Yan G; Li L; Tao Y; Liu S; Liu Y; Luo W; Wu Y; Tang M; Dong Z; Cao Y
    Proteomics; 2006 Mar; 6(6):1810-21. PubMed ID: 16470631
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Metal-chelating plastic MALDI (pMALDI) chips for the enhancement of phosphorylated-peptide/protein signals.
    Ibañez AJ; Muck A; Svatos A
    J Proteome Res; 2007 Sep; 6(9):3842-8. PubMed ID: 17655346
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of phosphotyrosyl proteins in vitreous humours of patients with vitreoretinal diseases by sodium dodecyl sulphate-polyacrylamide gel electrophoresis/Western blotting/matrix-assisted laser desorption time-of-flight mass spectrometry.
    Mukai N; Nakanishi T; Shimizu A; Takubo T; Ikeda T
    Ann Clin Biochem; 2008 May; 45(Pt 3):307-12. PubMed ID: 18482920
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Plant protein phosphorylation monitored by capillary liquid chromatography--element mass spectrometry.
    Krüger R; Wolschin F; Weckwerth W; Bettmer J; Lehmann WD
    Biochem Biophys Res Commun; 2007 Mar; 355(1):89-96. PubMed ID: 17288992
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative analysis of protein phosphorylation using two-dimensional difference gel electrophoresis.
    Deng Z; Bu S; Wang ZY
    Methods Mol Biol; 2012; 876():47-66. PubMed ID: 22576085
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plant phosphoproteomics: a long road ahead.
    Kersten B; Agrawal GK; Iwahashi H; Rakwal R
    Proteomics; 2006 Oct; 6(20):5517-28. PubMed ID: 16991200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proteomics of chondrocytes with special reference to phosphorylation changes of proteins in stretched human chondrosarcoma cells.
    Piltti J; Häyrinen J; Karjalainen HM; Lammi MJ
    Biorheology; 2008; 45(3-4):323-35. PubMed ID: 18836233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting phosphoprotein profiling by combination of hydroxyapatite-based phosphoprotein enrichment and SELDI-TOF MS.
    Vormbrock I; Kaber G; Hartwig S; Eckel J; Schrör K; Lehr S
    Arch Physiol Biochem; 2010; 116(4-5):181-7. PubMed ID: 20726833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatography.
    Wimmer MA; Lochnit G; Bassil E; Mühling KH; Goldbach HE
    Plant Cell Physiol; 2009 Jul; 50(7):1292-304. PubMed ID: 19478072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.