BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 16962352)

  • 1. Introducing glutathione biosynthetic capability into Lactococcus lactis subsp. cremoris NZ9000 improves the oxidative-stress resistance of the host.
    Fu RY; Bongers RS; van Swam II; Chen J; Molenaar D; Kleerebezem M; Hugenholtz J; Li Y
    Metab Eng; 2006 Nov; 8(6):662-71. PubMed ID: 16962352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Glutathione plays an anti-oxidant role in Lactococcus lactis].
    Fu RY; Chen J; Li Y
    Wei Sheng Wu Xue Bao; 2006 Jun; 46(3):379-84. PubMed ID: 16933605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutathione protects Lactococcus lactis against acid stress.
    Zhang J; Fu RY; Hugenholtz J; Li Y; Chen J
    Appl Environ Microbiol; 2007 Aug; 73(16):5268-75. PubMed ID: 17601814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutathione protects Lactococcus lactis against oxidative stress.
    Li Y; Hugenholtz J; Abee T; Molenaar D
    Appl Environ Microbiol; 2003 Oct; 69(10):5739-45. PubMed ID: 14532020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system.
    Liu F; Zhang Y; Qiao W; Zhu D; Xu H; Saris PEJ; Qiao M
    Microb Cell Fact; 2019 Nov; 18(1):198. PubMed ID: 31727072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of RecO deficiency in Lactococcus lactis NZ9000 on resistance to multiple environmental stresses.
    Zhang M; Chen J; Zhang J; Du G
    J Sci Food Agric; 2014 Dec; 94(15):3125-33. PubMed ID: 24648035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.
    Zhu D; Fu Y; Liu F; Xu H; Saris PE; Qiao M
    Microb Cell Fact; 2017 Jan; 16(1):1. PubMed ID: 28049473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods.
    Burgess C; O'connell-Motherway M; Sybesma W; Hugenholtz J; van Sinderen D
    Appl Environ Microbiol; 2004 Oct; 70(10):5769-77. PubMed ID: 15466513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis.
    Martín M; Gutiérrez J; Criado R; Herranz C; Cintas LM; Hernández PE
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):667-75. PubMed ID: 17594089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation.
    Cretenet M; Le Gall G; Wegmann U; Even S; Shearman C; Stentz R; Jeanson S
    BMC Genomics; 2014 Dec; 15(1):1054. PubMed ID: 25467604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analyses to reveal the protective role of glutathione in resistance of Lactococcus lactis to osmotic stress.
    Zhang Y; Zhang Y; Zhu Y; Mao S; Li Y
    Appl Environ Microbiol; 2010 May; 76(10):3177-86. PubMed ID: 20348298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered Probiotic
    Wu J; Tian X; Xu X; Gu X; Kong J; Guo T
    ACS Synth Biol; 2022 Apr; 11(4):1568-1576. PubMed ID: 35289165
    [No Abstract]   [Full Text] [Related]  

  • 14. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis.
    Gutiérrez J; Larsen R; Cintas LM; Kok J; Hernández PE
    Appl Microbiol Biotechnol; 2006 Aug; 72(1):41-51. PubMed ID: 16416297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a cadmium resistance Lactococcus lactis subsp. lactis strain by antioxidant assays and proteome profiles methods.
    Sheng Y; Yang X; Lian Y; Zhang B; He X; Xu W; Huang K
    Environ Toxicol Pharmacol; 2016 Sep; 46():286-291. PubMed ID: 27522548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of Lactobacillus paracasei SMN-LBK under ethanol stress.
    Guo J; Li X; Li B; Yang J; Jin D; Li K
    J Dairy Sci; 2020 Sep; 103(9):7813-7825. PubMed ID: 32564954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using
    Xu C; Qiao L; Ma L; Yan S; Guo Y; Dou X; Zhang B; Roman A
    Front Microbiol; 2019; 10():1632. PubMed ID: 31402902
    [No Abstract]   [Full Text] [Related]  

  • 18. Use of murine models to detect the allergenicity of genetically modified Lactococcus lactis NZ9000/pNZPNK.
    Chiang SS; Liu CF; Ku TW; Mau JL; Lin HT; Pan TM
    J Agric Food Chem; 2011 Apr; 59(8):3876-83. PubMed ID: 21410287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction and verification of Lactococcus lactis NZ9000 genome-scale metabolic model].
    Sun W; Zhang J; Du G
    Sheng Wu Gong Cheng Xue Bao; 2020 Aug; 36(8):1629-1639. PubMed ID: 32924361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT.
    Zhu Z; Ji X; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1091-1101. PubMed ID: 30232653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.