These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 16962834)

  • 1. The role of an absolutely conserved tryptophan residue in octamer formation and stability in mitochondrial creatine kinases.
    Hoffman GG; Sona S; Bertin M; Ellington WR
    Biochim Biophys Acta; 2006 Sep; 1764(9):1512-7. PubMed ID: 16962834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Over-expression, purification and characterization of the oligomerization dynamics of an invertebrate mitochondrial creatine kinase.
    Hoffman GG; Ellington WR
    Biochim Biophys Acta; 2005 Aug; 1751(2):184-93. PubMed ID: 15975860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional implications of the amino acid sequences of dimeric, cytoplasmic and octameric mitochondrial creatine kinases from a protostome invertebrate.
    Pineda AO; Ellington WR
    Eur J Biochem; 1999 Aug; 264(1):67-73. PubMed ID: 10447674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effects of peroxynitrite on human mitochondrial creatine kinase isoenzymes. Inactivation, octamer destabilization, and identification of involved residues.
    Wendt S; Schlattner U; Wallimann T
    J Biol Chem; 2003 Jan; 278(2):1125-30. PubMed ID: 12401781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems.
    Sona S; Suzuki T; Ellington WR
    Biochem Biophys Res Commun; 2004 May; 317(4):1207-14. PubMed ID: 15094398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origin of the genes for the isoforms of creatine kinase.
    Bertin M; Pomponi SM; Kokuhuta C; Iwasaki N; Suzuki T; Ellington WR
    Gene; 2007 May; 392(1-2):273-82. PubMed ID: 17329042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and stability of octameric mitochondrial creatine kinase isoform from herring (Clupea harengus) organ of vision.
    Niedźwiecka N; Grzyb K; Nona-Mołdawa A; Gronczewska J; Skorkowski EF
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Jul; 185():16-23. PubMed ID: 25770046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase.
    Schlattner U; Gehring F; Vernoux N; Tokarska-Schlattner M; Neumann D; Marcillat O; Vial C; Wallimann T
    J Biol Chem; 2004 Jun; 279(23):24334-42. PubMed ID: 15044463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes.
    Payne RM; Haas RC; Strauss AW
    Biochim Biophys Acta; 1991 Jul; 1089(3):352-61. PubMed ID: 1859839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial behavior of cytoplasmic and mitochondrial creatine kinase oligomeric states.
    Vernoux N; Granjon T; Marcillat O; Besson F; Vial C
    Biopolymers; 2006 Mar; 81(4):270-81. PubMed ID: 16283667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent enzyme kinetics and structural properties of the two human mitochondrial creatine kinase isoenzymes.
    Schlattner U; Eder M; Dolder M; Khuchua ZA; Strauss AW; Wallimann T
    Biol Chem; 2000 Nov; 381(11):1063-70. PubMed ID: 11154064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dimeric creatine kinase from a sponge: implications in terms of phosphagen kinase evolution.
    Ellington WR
    Comp Biochem Physiol B Biochem Mol Biol; 2000 May; 126(1):1-7. PubMed ID: 10825659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of assembly and dissociation of the mitochondrial creatine kinase octamer. A fluorescence study.
    Gross M; Wallimann T
    Biochemistry; 1993 Dec; 32(50):13933-40. PubMed ID: 8268169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity.
    Tokarska-Schlattner M; Wallimann T; Schlattner U
    Mol Pharmacol; 2002 Mar; 61(3):516-23. PubMed ID: 11854431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incipient complex formation between AP endonucleases and DNA containing AP site: a vital role of the tryptophan residue.
    Yamada Y; Kodera T; Ohishi K; Kaneda K; Shida T
    Nucleic Acids Symp Ser (Oxf); 2009; (53):309-10. PubMed ID: 19749384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation.
    Boyineni J; Kim J; Kang BS; Lee C; Jang SH
    Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of octameric creatine kinases.
    Ellington WR; Roux K; Pineda AO
    FEBS Lett; 1998 Mar; 425(1):75-8. PubMed ID: 9541010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The N-terminal heptapeptide of mitochondrial creatine kinase is important for octamerization.
    Kaldis P; Furter R; Wallimann T
    Biochemistry; 1994 Feb; 33(4):952-9. PubMed ID: 8305443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.