These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16962984)

  • 1. Disulfide isomerization and thiol-disulfide exchange of long neurotoxins from the venom of Ophiophagus hannah.
    Chang LS; Lin SR; Huang HB
    Arch Biochem Biophys; 2006 Oct; 454(2):181-8. PubMed ID: 16962984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unfolding/folding studies on cobrotoxin from Taiwan cobra venom: pH and GSH/GSSG govern disulfide isomerization at the C-terminus.
    Chang LS; Lin SR; Chang CC
    Arch Biochem Biophys; 1998 Jun; 354(1):1-8. PubMed ID: 9633591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-thiol substitution or protein dethiolation by thiol/disulfide exchange reactions: the albumin model.
    Summa D; Spiga O; Bernini A; Venditti V; Priora R; Frosali S; Margaritis A; Di Giuseppe D; Niccolai N; Di Simplicio P
    Proteins; 2007 Nov; 69(2):369-78. PubMed ID: 17607746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-glutathionylation in human platelets by a thiol-disulfide exchange-independent mechanism.
    Dalle-Donne I; Giustarini D; Colombo R; Milzani A; Rossi R
    Free Radic Biol Med; 2005 Jun; 38(11):1501-10. PubMed ID: 15890624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disulfide isomers of alpha-neurotoxins from King cobra (Ophiophagus hannah) venom.
    Lin SR; Chang LS; Chang CC
    Biochem Biophys Res Commun; 1999 Jan; 254(1):104-8. PubMed ID: 9920740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disulfide isomerization within the C-terminus of cobrotoxin decelerates by thiol compounds and trinitrophenylation, but accelerates by modification of carboxyl groups.
    Chang L; Lin S; Chang C; Yang C
    Arch Biochem Biophys; 1998 Oct; 358(1):164-70. PubMed ID: 9750177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic investigation of the thiol-disulfide exchange step in the reductive dehalogenation catalyzed by tetrachlorohydroquinone dehalogenase.
    Warner JR; Lawson SL; Copley SD
    Biochemistry; 2005 Aug; 44(30):10360-8. PubMed ID: 16042413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate enhancement of the oxidative folding of lysozyme by the use of aromatic thiol containing redox buffers.
    Gurbhele-Tupkar MC; Perez LR; Silva Y; Lees WJ
    Bioorg Med Chem; 2008 Mar; 16(5):2579-90. PubMed ID: 18065232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the glutathione metaboloma peptides by energy-resolved mass spectrometry as a tool to investigate into the interference of toxic heavy metals with their metabolic processes.
    Rubino FM; Pitton M; Brambilla G; Colombi A
    J Mass Spectrom; 2006 Dec; 41(12):1578-93. PubMed ID: 17136764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionization-reactivity relationships for cysteine thiols in polypeptides.
    Bulaj G; Kortemme T; Goldenberg DP
    Biochemistry; 1998 Jun; 37(25):8965-72. PubMed ID: 9636038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refolding of Taiwan cobra neurotoxin: intramolecular cross-link affects its refolding reaction.
    Chang LS; Lin SR; Yang CC
    Arch Biochem Biophys; 2001 Mar; 387(2):289-96. PubMed ID: 11370853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro-refolding of a single-chain Fv fragment in the presence of heteroaromatic thiols.
    Patil G; Rudolph R; Lange C
    J Biotechnol; 2008 Apr; 134(3-4):218-21. PubMed ID: 18321603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic thiol pKa effects on the folding rate of a disulfide containing protein.
    Gough JD; Gargano JM; Donofrio AE; Lees WJ
    Biochemistry; 2003 Oct; 42(40):11787-97. PubMed ID: 14529290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and disulfide structure determination of agelenin: identification of the carboxy-terminus as an amide form.
    Inui T; Hagiwara K; Nakajima K; Kimura T; Nakajima T; Sakakibara S
    Pept Res; 1992; 5(3):140-4. PubMed ID: 1421801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interchangeable modules in bacterial thiol-disulfide exchange pathways.
    Kouwen TR; van Dijl JM
    Trends Microbiol; 2009 Jan; 17(1):6-12. PubMed ID: 19059781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for measuring disulfide reduction by cultured mammalian cells: relative contributions of glutathione-dependent and glutathione-independent mechanisms.
    Biaglow JE; Donahue J; Tuttle S; Held K; Chrestensen C; Mieyal J
    Anal Biochem; 2000 May; 281(1):77-86. PubMed ID: 10847613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid sequence and chemical modification of a novel alpha-neurotoxin (Oh-5) from king cobra (Ophiophagus hannah) venom.
    Lin SR; Leu LF; Chang LS; Chang CC
    J Biochem; 1997 Apr; 121(4):690-5. PubMed ID: 9163519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug interactions with potential rubber closure extractables. Identification of thiol-disulfide exchange reaction products of captopril and thiurams.
    Corredor C; Tomasella FP; Young J
    J Chromatogr A; 2009 Jan; 1216(1):43-8. PubMed ID: 19041978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fully oxidized scrambled isomers are essential and predominant folding intermediates of cardiotoxin-III.
    Chang JY; Lu BY; Lin CC; Yu C
    FEBS Lett; 2006 Jan; 580(2):656-60. PubMed ID: 16412427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and purification of alpha-neurotoxins from king cobra (Ophiophagus hannah).
    He YY; Lee WH; Zhang Y
    Toxicon; 2004 Sep; 44(3):295-303. PubMed ID: 15302536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.