BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16963118)

  • 1. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity.
    Woodard JR; Hilldore AJ; Lan SK; Park CJ; Morgan AW; Eurell JA; Clark SG; Wheeler MB; Jamison RD; Wagoner Johnson AJ
    Biomaterials; 2007 Jan; 28(1):45-54. PubMed ID: 16963118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.
    Dellinger JG; Eurell JA; Stewart M; Jamison RD
    J Biomed Mater Res A; 2006 Feb; 76(2):366-76. PubMed ID: 16270335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing.
    Simon JL; Michna S; Lewis JA; Rekow ED; Thompson VP; Smay JE; Yampolsky A; Parsons JR; Ricci JL
    J Biomed Mater Res A; 2007 Dec; 83(3):747-58. PubMed ID: 17559109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity.
    Kim SS; Ahn KM; Park MS; Lee JH; Choi CY; Kim BS
    J Biomed Mater Res A; 2007 Jan; 80(1):206-15. PubMed ID: 17072849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of degradation and porosity on the load bearing properties of model hydroxyapatite bone scaffolds.
    Dellinger JG; Wojtowicz AM; Jamison RD
    J Biomed Mater Res A; 2006 Jun; 77(3):563-71. PubMed ID: 16498598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies.
    Cushnie EK; Khan YM; Laurencin CT
    J Biomed Mater Res A; 2008 Jan; 84(1):54-62. PubMed ID: 17600320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone response inside free-form fabricated macroporous hydroxyapatite scaffolds with and without an open microporosity.
    Malmström J; Adolfsson E; Arvidsson A; Thomsen P
    Clin Implant Dent Relat Res; 2007 Jun; 9(2):79-88. PubMed ID: 17535331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.
    Converse GL; Conrad TL; Merrill CH; Roeder RK
    Acta Biomater; 2010 Mar; 6(3):856-63. PubMed ID: 19665061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of micropore size on the mechanical properties of bulk hydroxyapatite and hydroxyapatite scaffolds.
    Cordell JM; Vogl ML; Wagoner Johnson AJ
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):560-70. PubMed ID: 19627863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone response to free form-fabricated hydroxyapatite and zirconia scaffolds: a histological study in the human maxilla.
    Malmström J; Slotte C; Adolfsson E; Norderyd O; Thomsen P
    Clin Oral Implants Res; 2009 Apr; 20(4):379-85. PubMed ID: 19298291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications.
    Landi E; Valentini F; Tampieri A
    Acta Biomater; 2008 Nov; 4(6):1620-6. PubMed ID: 18579459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability.
    Oliveira JM; Silva SS; Malafaya PB; Rodrigues MT; Kotobuki N; Hirose M; Gomes ME; Mano JF; Ohgushi H; Reis RL
    J Biomed Mater Res A; 2009 Oct; 91(1):175-86. PubMed ID: 18780358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.