These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 16963207)

  • 1. Platelet adsorption and hemolytic properties of liquid crystal/composite polymers.
    Shih MF; Shau MD; Chang MY; Chiou SK; Chang JK; Cherng JY
    Int J Pharm; 2006 Dec; 327(1-2):117-25. PubMed ID: 16963207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of novel liquid crystal compounds and their blood compatibility as anticoagulative materials.
    Tu M; Cha ZG; Feng BH; Zhou CR
    Biomed Mater; 2006 Dec; 1(4):202-5. PubMed ID: 18458407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of substrate and orientational property of liquid crystal domains on the blood compatibility of polymer/liquid crystal composite membranes.
    Tu M; Cha ZG; Zhao JH; Feng BH; Zhou CR
    IET Nanobiotechnol; 2007 Dec; 1(6):87-93. PubMed ID: 18035909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and evaluation of poly(hexamethylene-urethane) and PEG-poly(hexamethylene-urethane) and their cholesteryl oleyl carbonate composites for human blood biocompatibility.
    Shih MF; Shau MD; Hsieh CC; Cherng JY
    Molecules; 2011 Sep; 16(10):8181-97. PubMed ID: 21959293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood-compatibility of polyurethane/liquid crystal composite membranes.
    Zhou C; Yi Z
    Biomaterials; 1999 Nov; 20(22):2093-9. PubMed ID: 10555076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells.
    Ye X; Hu X; Wang H; Liu J; Zhao Q
    Acta Biomater; 2012 Mar; 8(3):1057-67. PubMed ID: 22122977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S; Mai-Ngam K
    Colloids Surf B Biointerfaces; 2005 May; 42(2):147-55. PubMed ID: 15833667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane.
    Liu TY; Lin WC; Huang LY; Chen SY; Yang MC
    Biomaterials; 2005 Apr; 26(12):1437-44. PubMed ID: 15482832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and blood compatibility of polysiloxane/liquid-crystal composite membranes.
    Li L; Tu M; Mou S; Zhou C
    Biomaterials; 2001 Oct; 22(19):2595-9. PubMed ID: 11519778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemocompatibilty of new ionic polyurethanes: influence of carboxylic group insertion modes.
    Poussard L; Burel F; Couvercelle JP; Merhi Y; Tabrizian M; Bunel C
    Biomaterials; 2004 Aug; 25(17):3473-83. PubMed ID: 15020121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion.
    Yuan J; Chen L; Jiang X; Shen J; Lin S
    Colloids Surf B Biointerfaces; 2004 Nov; 39(1-2):87-94. PubMed ID: 15542345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminal surface microgeometry affects platelet adhesion in small-diameter synthetic grafts.
    Losi P; Lombardi S; Briganti E; Soldani G
    Biomaterials; 2004 Aug; 25(18):4447-55. PubMed ID: 15046935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility assessment of cyclic olefin copolymers: Impact of two additives on cytotoxicity, oxidative stress, inflammatory reactions, and hemocompatibility.
    Bernard M; Jubeli E; Bakar J; Tortolano L; Saunier J; Yagoubi N
    J Biomed Mater Res A; 2017 Dec; 105(12):3333-3349. PubMed ID: 28875577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemocompatibility studies on a degradable polar hydrophobic ionic polyurethane (D-PHI).
    Brockman KS; Kizhakkedathu JN; Santerre JP
    Acta Biomater; 2017 Jan; 48():368-377. PubMed ID: 27818307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in hemocompatibility of chitosan/soy protein composite membranes by heparinization.
    Wang X; Shi N; Chen Y; Li C; Du X; Jin W; Chen Y; Chang PR
    Biomed Mater Eng; 2012; 22(1-3):143-50. PubMed ID: 22766713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on a new strategy for surface modification of polymeric biomaterials.
    Aldenhoff YB; Koole LH
    J Biomed Mater Res; 1995 Aug; 29(8):917-28. PubMed ID: 7593035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species.
    Itoh S; Susuki C; Tsuji T
    J Biomed Mater Res A; 2006 May; 77(2):294-303. PubMed ID: 16400657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, characterization and cytocompatibility of polyurethane/cellulose based liquid crystal composite membranes.
    Han W; Tu M; Zeng R; Zhao J; Zhou C
    Carbohydr Polym; 2012 Oct; 90(3):1353-61. PubMed ID: 22939351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro studies of platelet adhesion, activation, and protein adsorption on curcumin-eluting biodegradable stent materials.
    Pan CJ; Shao ZY; Tang JJ; Wang J; Huang N
    J Biomed Mater Res A; 2007 Sep; 82(3):740-6. PubMed ID: 17326229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein adsorption and platelet adhesion onto ion-containing polyurethanes.
    Alibeik S; Sheardown H; Rizkalla AS; Mequanint K
    J Biomater Sci Polym Ed; 2007; 18(9):1195-210. PubMed ID: 17931508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.