These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16963359)

  • 61. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells.
    Janicki P; Schmidmaier G
    Injury; 2011 Sep; 42 Suppl 2():S77-81. PubMed ID: 21724186
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Strategy for generating tissue-engineered human bone construct.
    Tan KK; Aminuddin BS; Tan GH; Sabarul Afian M; Ng MH; Fauziah O; Ruszymah BH
    Med J Malaysia; 2004 May; 59 Suppl B():43-4. PubMed ID: 15468810
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Osteoblast activity on carbonated hydroxyapatite.
    Rupani A; Hidalgo-Bastida LA; Rutten F; Dent A; Turner I; Cartmell S
    J Biomed Mater Res A; 2012 Apr; 100(4):1089-96. PubMed ID: 22318934
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of in vitro bone formation on the mechanical properties of a trabeculated hydroxyapatite bone substitute.
    Kazakia GJ; Nauman EA; Ebenstein DM; Halloran BP; Keaveny TM
    J Biomed Mater Res A; 2006 Jun; 77(4):688-99. PubMed ID: 16514602
    [TBL] [Abstract][Full Text] [Related]  

  • 65. [New technologies in tissue engineering. Visions of an unlimited bone generation without problems].
    Wirth CJ; Windhagen H
    Orthopade; 2004 Dec; 33(12):1335-7. PubMed ID: 15578254
    [No Abstract]   [Full Text] [Related]  

  • 66. Osteoinduction: a review of old concepts with new standards.
    Miron RJ; Zhang YF
    J Dent Res; 2012 Aug; 91(8):736-44. PubMed ID: 22318372
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stable biofunctionalization of hydroxyapatite (HA) surfaces by HA-binding/osteogenic modular peptides for inducing osteogenic differentiation of mesenchymal stem cells.
    Polini A; Wang J; Bai H; Zhu Y; Tomsia AP; Mao C
    Biomater Sci; 2014; 2():1779-1786. PubMed ID: 25642327
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Morphogen Delivery by Osteoconductive Nanoparticles Instructs Stromal Cell Spheroid Phenotype.
    Whitehead J; Kothambawala A; Leach JK
    Adv Biosyst; 2019 Dec; 3(12):. PubMed ID: 32270027
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recombinant hBMP4 incorporated with non-canonical amino acid for binding to hydroxyapatite.
    Sakuragi M; Kitajima T; Nagamune T; Ito Y
    Biotechnol Lett; 2011 Sep; 33(9):1885-90. PubMed ID: 21544608
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [A dynamic study of the intensity of mitogenesis in an osteoblast culture in the presence of ultrasonically dispersed hydroxyapatite].
    Zuev VP; Sergeev PV; Pankratov AS; Bolotova EN; Semeĭkin AV; Shimanovskiĭ NL
    Stomatologiia (Mosk); 1994; 73(2):5-7. PubMed ID: 9612036
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vitro delivery of dexamethasone using hydroxyapatite reservoirs.
    Billotte WG; Bajpai PK
    Biomed Sci Instrum; 1997; 34():13-7. PubMed ID: 9603005
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bone morphogenetic proteins in human bone regeneration.
    Groeneveld EH; Burger EH
    Eur J Endocrinol; 2000 Jan; 142(1):9-21. PubMed ID: 10633215
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Synthesis and Evaluation of a Zinc Eluting rGO/Hydroxyapatite Nanocomposite Optimized for Bone Augmentation.
    Chopra V; Thomas J; Sharma A; Panwar V; Kaushik S; Sharma S; Porwal K; Kulkarni C; Rajput S; Singh H; Jagavelu K; Chattopadhyay N; Ghosh D
    ACS Biomater Sci Eng; 2020 Dec; 6(12):6710-6725. PubMed ID: 33320599
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effect of hydroxyapatite as a component of biostable composites on population and proliferation of mesenchymal stem cells.
    Tatatarenko-Kozmina TY; Denisov-Nikol'skii YI; Volozhin AI; Doktorov AA; Mal'ginov NN; Krasnov AP
    Bull Exp Biol Med; 2007 Apr; 143(4):519-23. PubMed ID: 18214314
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Effect of different nanophase hydroxyapatite particles on osteoblasts metabolism].
    Ma F; Wang JH; Zhao HQ; Lv YP; Wang KT; Wei FC
    Shanghai Kou Qiang Yi Xue; 2007 Apr; 16(2):201-5. PubMed ID: 17546393
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell viability and hemocompatibility evaluation of a starch-based hydrogel loaded with hydroxyapatite or calcium carbonate for maxillofacial bone regeneration.
    Flores-Arriaga JC; de Jesús Pozos-Guillén A; Escobar-García DM; Grandfils C; Cerda-Cristerna BI
    Odontology; 2017 Oct; 105(4):398-407. PubMed ID: 28386653
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Potential Osteoinductive Effects of Hydroxyapatite Nanoparticles on Mesenchymal Stem Cells by Endothelial Cell Interaction.
    Wang Z; Han T; Zhu H; Tang J; Guo Y; Jin Y; Wang Y; Chen G; Gu N; Wang C
    Nanoscale Res Lett; 2021 Apr; 16(1):67. PubMed ID: 33900483
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Effect of Ca
    Retegi-Carrión S; Ferrandez-Montero A; Eguiluz A; Ferrari B; Abarrategi A
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745998
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cytotoxic Effects and Osteogenic Activity of Calcium Sulfate with and without Recombinant Human Bone Morphogenetic Protein 2 and Nano-Hydroxyapatite Adjacent to MG-63 Cell Line.
    Ghorbanzadeh A; Aminsobhani M; Khoshzaban A; Abbaszadeh A; Bolhari B; Ghorbanzadeh A; Shamshiri AR
    J Dent (Tehran); 2015 May; 12(5):352-63. PubMed ID: 26877731
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A rationale for delivery of osteoinductive proteins.
    Brekke JH
    Tissue Eng; 1996; 2(2):97-114. PubMed ID: 19877933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.