BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 16963456)

  • 1. Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes.
    Watanabe K; Nureki O; Fukai S; Endo Y; Hori H
    J Biol Chem; 2006 Nov; 281(45):34630-9. PubMed ID: 16963456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family.
    Watanabe K; Nureki O; Fukai S; Ishii R; Okamoto H; Yokoyama S; Endo Y; Hori H
    J Biol Chem; 2005 Mar; 280(11):10368-77. PubMed ID: 15637073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural change of tRNA (Gm18) methyltransferase by binding of methyl donor analogues.
    Watanabe K; Nureki O; Fukai S; Endo Y; Hori H
    Nucleic Acids Symp Ser (Oxf); 2005; (49):301-2. PubMed ID: 17150753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroxyl radical probing of tRNA (Gm18) methyltransferase [TrmH]-AdoMet-artificial tRNA ternary complex.
    Ochi A; Hori H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):373-4. PubMed ID: 18029742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The catalytic domain of topological knot tRNA methyltransferase (TrmH) discriminates between substrate tRNA and nonsubstrate tRNA via an induced-fit process.
    Ochi A; Makabe K; Yamagami R; Hirata A; Sakaguchi R; Hou YM; Watanabe K; Nureki O; Kuwajima K; Hori H
    J Biol Chem; 2013 Aug; 288(35):25562-25574. PubMed ID: 23867454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible recognition of the tRNA G18 methylation target site by TrmH methyltransferase through first binding and induced fit processes.
    Ochi A; Makabe K; Kuwajima K; Hori H
    J Biol Chem; 2010 Mar; 285(12):9018-29. PubMed ID: 20053984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of tRNA (Gm18) methyltransferase from Thermus thermophilus HB8: domain structure and conserved amino acid sequence motifs.
    Hori H; Suzuki T; Sugawara K; Inoue Y; Shibata T; Kuramitsu S; Yokoyama S; Oshima T; Watanabe K
    Genes Cells; 2002 Mar; 7(3):259-72. PubMed ID: 11918670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme.
    Nureki O; Watanabe K; Fukai S; Ishii R; Endo Y; Hori H; Yokoyama S
    Structure; 2004 Apr; 12(4):593-602. PubMed ID: 15062082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Thermus thermophilus tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA.
    Barraud P; Golinelli-Pimpaneau B; Atmanene C; Sanglier S; Van Dorsselaer A; Droogmans L; Dardel F; Tisné C
    J Mol Biol; 2008 Mar; 377(2):535-50. PubMed ID: 18262540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition.
    Ahn HJ; Kim HW; Yoon HJ; Lee BI; Suh SW; Yang JK
    EMBO J; 2003 Jun; 22(11):2593-603. PubMed ID: 12773376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalysis by the second class of tRNA(m1G37) methyl transferase requires a conserved proline.
    Christian T; Evilia C; Hou YM
    Biochemistry; 2006 Jun; 45(24):7463-73. PubMed ID: 16768442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of essential amino acid residues of tRNA (Gm18)methyltransferase for methyl-transfer activity.
    Watanabe K; Hori H; Endo Y
    Nucleic Acids Res Suppl; 2001; (1):33-4. PubMed ID: 12836250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms 2'-O-methylcytidine at position 56 of tRNA.
    Kuratani M; Bessho Y; Nishimoto M; Grosjean H; Yokoyama S
    J Mol Biol; 2008 Jan; 375(4):1064-75. PubMed ID: 18068186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic features of the atypical tRNA m1G9 SPOUT methyltransferase, Trm10.
    Krishnamohan A; Jackman JE
    Nucleic Acids Res; 2017 Sep; 45(15):9019-9029. PubMed ID: 28911116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for methyl-donor-dependent and sequence-specific binding to tRNA substrates by knotted methyltransferase TrmD.
    Ito T; Masuda I; Yoshida K; Goto-Ito S; Sekine S; Suh SW; Hou YM; Yokoyama S
    Proc Natl Acad Sci U S A; 2015 Aug; 112(31):E4197-205. PubMed ID: 26183229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli tRNA (Gm18) methyltransferase (TrmH) requires the correct localization of its methylation site (G18) in the D-loop for efficient methylation.
    Kohno Y; Ito A; Okamoto A; Yamagami R; Hirata A; Hori H
    J Biochem; 2023 Dec; 175(1):43-56. PubMed ID: 37844264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of catalytic cycle by a pair of analogous tRNA modification enzymes.
    Christian T; Lahoud G; Liu C; Hou YM
    J Mol Biol; 2010 Jul; 400(2):204-17. PubMed ID: 20452364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer RNA methyltransferases with a SpoU-TrmD  (SPOUT) fold and their modified nucleosides in  tRNA.
    Hori H
    Biomolecules; 2017 Feb; 7(1):. PubMed ID: 28264529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2'-O-methyltransferase activity.
    Persson BC; Jäger G; Gustafsson C
    Nucleic Acids Res; 1997 Oct; 25(20):4093-7. PubMed ID: 9321663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, Aquifex aeolicus Trm1, based on the X-ray crystal structure.
    Awai T; Ochi A; Ihsanawati ; Sengoku T; Hirata A; Bessho Y; Yokoyama S; Hori H
    J Biol Chem; 2011 Oct; 286(40):35236-46. PubMed ID: 21844194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.