These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 16963567)

  • 1. Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties.
    Wagner B; Tharmann R; Haase I; Fischer M; Bausch AR
    Proc Natl Acad Sci U S A; 2006 Sep; 103(38):13974-8. PubMed ID: 16963567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective-medium approach for stiff polymer networks with flexible cross-links.
    Broedersz CP; Storm C; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061914. PubMed ID: 19658531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible stress softening of actin networks.
    Chaudhuri O; Parekh SH; Fletcher DA
    Nature; 2007 Jan; 445(7125):295-8. PubMed ID: 17230186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain hardening, avalanches, and strain softening in dense cross-linked actin networks.
    Aström JA; Kumar PB; Vattulainen I; Karttunen M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051913. PubMed ID: 18643108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prokaryotic origin of the actin cytoskeleton.
    van den Ent F; Amos LA; Löwe J
    Nature; 2001 Sep; 413(6851):39-44. PubMed ID: 11544518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linking molecules modify composite actin networks independently.
    Schmoller KM; Lieleg O; Bausch AR
    Phys Rev Lett; 2008 Sep; 101(11):118102. PubMed ID: 18851335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rheology of two-dimensional F-actin networks associated with a lipid interface.
    Walder R; Levine AJ; Dennin M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 1):011909. PubMed ID: 18351878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro- and macrorheological properties of isotropically cross-linked actin networks.
    Luan Y; Lieleg O; Wagner B; Bausch AR
    Biophys J; 2008 Jan; 94(2):688-93. PubMed ID: 17872953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and viscoelastic properties of actin/filamin networks: cross-linked versus bundled networks.
    Schmoller KM; Lieleg O; Bausch AR
    Biophys J; 2009 Jul; 97(1):83-9. PubMed ID: 19580746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces.
    Tharmann R; Claessens MM; Bausch AR
    Biophys J; 2006 Apr; 90(7):2622-7. PubMed ID: 16415061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal polymer networks: viscoelastic properties are determined by the microscopic interaction potential of cross-links.
    Lieleg O; Schmoller KM; Claessens MM; Bausch AR
    Biophys J; 2009 Jun; 96(11):4725-32. PubMed ID: 19486695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin filament length tunes elasticity of flexibly cross-linked actin networks.
    Kasza KE; Broedersz CP; Koenderink GH; Lin YC; Messner W; Millman EA; Nakamura F; Stossel TP; Mackintosh FC; Weitz DA
    Biophys J; 2010 Aug; 99(4):1091-100. PubMed ID: 20712992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonaffine rubber elasticity for stiff polymer networks.
    Heussinger C; Schaefer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031906. PubMed ID: 17930270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic models of the actin cytoskeleton.
    Mohrdieck C; Dalmas F; Arzt E; Tharmann R; Claessens MM; Bausch AR; Roth A; Sackmann E; Schmitz CH; Curtis J; Roos W; Schulz S; Uhrig K; Spatz JP
    Small; 2007 Jun; 3(6):1015-22. PubMed ID: 17487896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth.
    Plastino J; Lelidis I; Prost J; Sykes C
    Eur Biophys J; 2004 Jul; 33(4):310-20. PubMed ID: 14663631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale impact of nucleotides and cations on the conformational equilibrium, elasticity and rheology of actin filaments and crosslinked networks.
    Bidone TC; Kim T; Deriu MA; Morbiducci U; Kamm RD
    Biomech Model Mechanobiol; 2015 Oct; 14(5):1143-55. PubMed ID: 25708806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical characterisation of the actin-binding properties of utrophin.
    Moores CA; Kendrick-Jones J
    Cell Motil Cytoskeleton; 2000 Jun; 46(2):116-28. PubMed ID: 10891857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks.
    Head DA; Levine AJ; MacKintosh FC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061907. PubMed ID: 14754234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and viscoelastic properties of actin networks formed by espin or pathologically relevant espin mutants.
    Lieleg O; Schmoller KM; Purdy Drew KR; Claessens MM; Semmrich C; Zheng L; Bartles JR; Bausch AR
    Chemphyschem; 2009 Nov; 10(16):2813-7. PubMed ID: 19780097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the utrophin actin-binding domain bound to F-actin reveals binding by an induced fit mechanism.
    Moores CA; Keep NH; Kendrick-Jones J
    J Mol Biol; 2000 Mar; 297(2):465-80. PubMed ID: 10715214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.