These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 16963639)
1. Symbiotic "Archaezoa" of the primitive termite Mastotermes darwiniensis still play a role in cellulase production. Watanabe H; Takase A; Tokuda G; Yamada A; Lo N Eukaryot Cell; 2006 Sep; 5(9):1571-6. PubMed ID: 16963639 [TBL] [Abstract][Full Text] [Related]
2. Termite gut symbiotic archaezoa are becoming living metabolic fossils. Li L; Fröhlich J; Pfeiffer P; König H Eukaryot Cell; 2003 Oct; 2(5):1091-8. PubMed ID: 14555492 [TBL] [Abstract][Full Text] [Related]
3. Correlation of cellulase gene expression and cellulolytic activity throughout the gut of the termite Reticulitermes flavipes. Zhou X; Smith JA; Oi FM; Koehler PG; Bennett GW; Scharf ME Gene; 2007 Jun; 395(1-2):29-39. PubMed ID: 17408885 [TBL] [Abstract][Full Text] [Related]
4. Hidden cellulases in termites: revision of an old hypothesis. Tokuda G; Watanabe H Biol Lett; 2007 Jun; 3(3):336-9. PubMed ID: 17374589 [TBL] [Abstract][Full Text] [Related]
5. Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Tokuda G; Lo N; Watanabe H; Arakawa G; Matsumoto T; Noda H Mol Ecol; 2004 Oct; 13(10):3219-28. PubMed ID: 15367134 [TBL] [Abstract][Full Text] [Related]
6. A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. Sethi A; Kovaleva ES; Slack JM; Brown S; Buchman GW; Scharf ME Arch Insect Biochem Physiol; 2013 Dec; 84(4):175-93. PubMed ID: 24186432 [TBL] [Abstract][Full Text] [Related]
7. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Nakashima K; Watanabe H; Saitoh H; Tokuda G; Azuma JI Insect Biochem Mol Biol; 2002 Jul; 32(7):777-84. PubMed ID: 12044494 [TBL] [Abstract][Full Text] [Related]
8. Three endogenous cellulases from termite, Reticulitermes speratus KMT001. Ahn HH; Kim TJ Arch Insect Biochem Physiol; 2021 Mar; 106(3):e21766. PubMed ID: 33590531 [TBL] [Abstract][Full Text] [Related]
9. Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. Tokuda G; Watanabe H; Hojo M; Fujita A; Makiya H; Miyagi M; Arakawa G; Arioka M J Insect Physiol; 2012 Jan; 58(1):147-54. PubMed ID: 22085675 [TBL] [Abstract][Full Text] [Related]
10. Digestive beta-glucosidases from the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characterization, and alteration in sites of expression. Tokuda G; Miyagi M; Makiya H; Watanabe H; Arakawa G Insect Biochem Mol Biol; 2009 Dec; 39(12):931-7. PubMed ID: 19944757 [TBL] [Abstract][Full Text] [Related]
11. Does correlation of cellulase gene expression and cellulolytic activity in the gut of termite suggest synergistic collaboration of cellulases? Tokuda G; Watanabe H; Lo N Gene; 2007 Oct; 401(1-2):131-4. PubMed ID: 17720335 [TBL] [Abstract][Full Text] [Related]
12. Purification and molecular cloning of xylanases from the wood-feeding termite, Coptotermes formosanus Shiraki. Arakawa G; Watanabe H; Yamasaki H; Maekawa H; Tokuda G Biosci Biotechnol Biochem; 2009 Mar; 73(3):710-8. PubMed ID: 19270398 [TBL] [Abstract][Full Text] [Related]
13. Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Tokuda G; Mikaelyan A; Fukui C; Matsuura Y; Watanabe H; Fujishima M; Brune A Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E11996-E12004. PubMed ID: 30504145 [TBL] [Abstract][Full Text] [Related]
14. Molecular and biochemical markers for monitoring dynamic shifts of cellulolytic protozoa in Reticulitermes flavipes. Wheeler MM; Zhou X; Scharf ME; Oi FM Insect Biochem Mol Biol; 2007 Dec; 37(12):1366-74. PubMed ID: 17967355 [TBL] [Abstract][Full Text] [Related]
15. Genome shrinkage and loss of nutrient-providing potential in the obligate symbiont of the primitive termite Mastotermes darwiniensis. Sabree ZL; Huang CY; Arakawa G; Tokuda G; Lo N; Watanabe H; Moran NA Appl Environ Microbiol; 2012 Jan; 78(1):204-10. PubMed ID: 22020505 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and characterization of a cellulase gene from a symbiotic protist of the lower termite, Coptotermes formosanus. Inoue T; Moriya S; Ohkuma M; Kudo T Gene; 2005 Apr; 349():67-75. PubMed ID: 15777663 [TBL] [Abstract][Full Text] [Related]
17. New endo-beta-1,4-glucanases from the parabasalian symbionts, Pseudotrichonympha grassii and Holomastigotoides mirabile of Coptotermes termites. Watanabe H; Nakashima K; Saito H; Slaytor M Cell Mol Life Sci; 2002 Nov; 59(11):1983-92. PubMed ID: 12530528 [TBL] [Abstract][Full Text] [Related]
18. Diverse genes of cellulase homologues of glycosyl hydrolase family 45 from the symbiotic protists in the hindgut of the termite Reticulitermes speratus. Ohtoko K; Ohkuma M; Moriya S; Inoue T; Usami R; Kudo T Extremophiles; 2000 Dec; 4(6):343-9. PubMed ID: 11139076 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome analysis of the digestive organs of Hodotermopsis sjostedti, a lower termite that hosts mutualistic microorganisms in its hindgut. Yuki M; Moriya S; Inoue T; Kudo T Zoolog Sci; 2008 Apr; 25(4):401-6. PubMed ID: 18459822 [TBL] [Abstract][Full Text] [Related]
20. Metatranscriptomic Techniques for Identifying Cellulases in Termites and their Symbionts. Peterson BF; Scharf ME Methods Mol Biol; 2018; 1796():85-101. PubMed ID: 29856048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]