BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 16964252)

  • 1. Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.
    Borrell V; Marín O
    Nat Neurosci; 2006 Oct; 9(10):1284-93. PubMed ID: 16964252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin.
    Hevner RF; Neogi T; Englund C; Daza RA; Fink A
    Brain Res Dev Brain Res; 2003 Mar; 141(1-2):39-53. PubMed ID: 12644247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium.
    Bielle F; Griveau A; Narboux-Nême N; Vigneau S; Sigrist M; Arber S; Wassef M; Pierani A
    Nat Neurosci; 2005 Aug; 8(8):1002-12. PubMed ID: 16041369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CXCR7 Receptor Controls the Maintenance of Subpial Positioning of Cajal-Retzius Cells.
    Trousse F; Poluch S; Pierani A; Dutriaux A; Bock HH; Nagasawa T; Verdier JM; Rossel M
    Cereb Cortex; 2015 Oct; 25(10):3446-57. PubMed ID: 25085881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy.
    Duveau V; Madhusudan A; Caleo M; Knuesel I; Fritschy JM
    Hippocampus; 2011 Sep; 21(9):935-44. PubMed ID: 20865728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LIM-homeobox gene Lhx5 is required for normal development of Cajal-Retzius cells.
    Miquelajáuregui A; Varela-Echavarría A; Ceci ML; García-Moreno F; Ricaño I; Hoang K; Frade-Pérez D; Portera-Cailliau C; Tamariz E; De Carlos JA; Westphal H; Zhao Y
    J Neurosci; 2010 Aug; 30(31):10551-62. PubMed ID: 20685998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origins and migratory routes of murine Cajal-Retzius cells.
    García-Moreno F; López-Mascaraque L; De Carlos JA
    J Comp Neurol; 2007 Jan; 500(3):419-32. PubMed ID: 17120279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CXCR4 regulates interneuron migration in the developing neocortex.
    Stumm RK; Zhou C; Ara T; Lazarini F; Dubois-Dalcq M; Nagasawa T; Höllt V; Schulz S
    J Neurosci; 2003 Jun; 23(12):5123-30. PubMed ID: 12832536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stromal-derived factor-1 (CXCL12) regulates laminar position of Cajal-Retzius cells in normal and dysplastic brains.
    Paredes MF; Li G; Berger O; Baraban SC; Pleasure SJ
    J Neurosci; 2006 Sep; 26(37):9404-12. PubMed ID: 16971524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Presenilin-1 deficiency leads to loss of Cajal-Retzius neurons and cortical dysplasia similar to human type 2 lissencephaly.
    Hartmann D; De Strooper B; Saftig P
    Curr Biol; 1999 Jul; 9(14):719-27. PubMed ID: 10421573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building a human cortex: the evolutionary differentiation of Cajal-Retzius cells and the cortical hem.
    Meyer G
    J Anat; 2010 Oct; 217(4):334-43. PubMed ID: 20626498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrity of Cajal-Retzius cells in the reeler-mouse hippocampus.
    Anstötz M; Karsak M; Rune GM
    Hippocampus; 2019 Jun; 29(6):550-565. PubMed ID: 30394609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate-like immunoreactivity and fate of Cajal-Retzius cells in the murine cortex as identified with calretinin antibody.
    del Río JA; Martínez A; Fonseca M; Auladell C; Soriano E
    Cereb Cortex; 1995; 5(1):13-21. PubMed ID: 7719127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization.
    Alcántara S; Pozas E; Ibañez CF; Soriano E
    Cereb Cortex; 2006 Apr; 16(4):487-99. PubMed ID: 16000651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact repulsion controls the dispersion and final distribution of Cajal-Retzius cells.
    Villar-Cerviño V; Molano-Mazón M; Catchpole T; Valdeolmillos M; Henkemeyer M; Martínez LM; Borrell V; Marín O
    Neuron; 2013 Feb; 77(3):457-71. PubMed ID: 23395373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order.
    Yoshida M; Assimacopoulos S; Jones KR; Grove EA
    Development; 2006 Feb; 133(3):537-45. PubMed ID: 16410414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative aspects of p73 and Reelin expression in Cajal-Retzius cells and the cortical hem in lizard, mouse and human.
    Cabrera-Socorro A; Hernandez-Acosta NC; Gonzalez-Gomez M; Meyer G
    Brain Res; 2007 Feb; 1132(1):59-70. PubMed ID: 17189620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of p73 and Reelin in the developing human cortex.
    Meyer G; Perez-Garcia CG; Abraham H; Caput D
    J Neurosci; 2002 Jun; 22(12):4973-86. PubMed ID: 12077194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cajal-Retzius cells and subplate neurons differentially express vesicular glutamate transporters 1 and 2 during development of mouse cortex.
    Ina A; Sugiyama M; Konno J; Yoshida S; Ohmomo H; Nogami H; Shutoh F; Hisano S
    Eur J Neurosci; 2007 Aug; 26(3):615-23. PubMed ID: 17651422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of SDF-1alpha and SDF-1gamma mRNAs, migration pathways, and phenotypes of CXCR4-expressing neurons in the developing rat telencephalon.
    Stumm R; Kolodziej A; Schulz S; Kohtz JD; Höllt V
    J Comp Neurol; 2007 May; 502(3):382-99. PubMed ID: 17366607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.