These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 16964919)
1. To simulate blackbody radiation frequency shift in cesium fountain frequency standard with CO2 laser. Chen J IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1685-8. PubMed ID: 16964919 [TBL] [Abstract][Full Text] [Related]
3. Development and tuning of the microwave resonant cavity of a cryogenic cesium atomic fountain clock. Yang F; Wang X; Fan S; Bai Y; Shi J; Liu D; Zhang H; Guan Y; Hao Q; Ruan J; Zhang S Rev Sci Instrum; 2022 Apr; 93(4):044708. PubMed ID: 35489952 [TBL] [Abstract][Full Text] [Related]
4. Stark shift of the Cs clock transition frequency: a new experimental approach. Robyr JL; Knowles P; Weis A IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):613-7. PubMed ID: 20211778 [TBL] [Abstract][Full Text] [Related]
5. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Golovizin A; Fedorova E; Tregubov D; Sukachev D; Khabarova K; Sorokin V; Kolachevsky N Nat Commun; 2019 Apr; 10(1):1724. PubMed ID: 30979896 [TBL] [Abstract][Full Text] [Related]
7. Precision calculation of blackbody radiation shifts for optical frequency metrology. Safronova MS; Kozlov MG; Clark CW Phys Rev Lett; 2011 Sep; 107(14):143006. PubMed ID: 22107192 [TBL] [Abstract][Full Text] [Related]
8. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation. Lipphardt B; Gerginov V; Weyers S IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):761-766. PubMed ID: 28103194 [TBL] [Abstract][Full Text] [Related]
9. Blackbody radiation shifts in optical atomic clocks. Safronova M; Kozlov M; Clark C IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):439-47. PubMed ID: 22481777 [TBL] [Abstract][Full Text] [Related]
10. Accurate Determination of Blackbody Radiation Shifts in a Strontium Molecular Lattice Clock. Iritani B; Tiberi E; Skomorowski W; Moszynski R; Borkowski M; Zelevinsky T Phys Rev Lett; 2023 Dec; 131(26):263201. PubMed ID: 38215384 [TBL] [Abstract][Full Text] [Related]
11. High-accuracy calculation of the blackbody radiation shift in the 133Cs primary frequency standard. Beloy K; Safronova UI; Derevianko A Phys Rev Lett; 2006 Jul; 97(4):040801. PubMed ID: 16907560 [TBL] [Abstract][Full Text] [Related]
12. Frequency shift of the cesium clock transition due to blackbody radiation. Angstmann EJ; Dzuba VA; Flambaum VV Phys Rev Lett; 2006 Jul; 97(4):040802. PubMed ID: 16907561 [TBL] [Abstract][Full Text] [Related]
13. High accuracy correction of blackbody radiation shift in an optical lattice clock. Middelmann T; Falke S; Lisdat C; Sterr U Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558 [TBL] [Abstract][Full Text] [Related]
14. High-accuracy measurement of the differential scalar polarizability of a 88Sr+ clock using the time-dilation effect. Dubé P; Madej AA; Tibbo M; Bernard JE Phys Rev Lett; 2014 May; 112(17):173002. PubMed ID: 24836242 [TBL] [Abstract][Full Text] [Related]
15. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Margolis HS; Barwood GP; Huang G; Klein HA; Lea SN; Szymaniec K; Gill P Science; 2004 Nov; 306(5700):1355-8. PubMed ID: 15550666 [TBL] [Abstract][Full Text] [Related]
16. Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Niering M; Holzwarth R; Reichert J; Pokasov P; Udem T; Weitz M; Hansch TW; Lemonde P; Santarelli G; Abgrall M; Laurent P; Salomon C; Clairon A Phys Rev Lett; 2000 Jun; 84(24):5496-9. PubMed ID: 10990978 [TBL] [Abstract][Full Text] [Related]
19. Characterization of light shift below 10(-15) in a cesium fountain frequency standard operated without the use of mechanical shutters. Enzer DG; Klipstein WM IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Sep; 53(9):1564-9. PubMed ID: 16964906 [TBL] [Abstract][Full Text] [Related]
20. Absolute frequency measurement of the In+ clock transition with a mode-locked laser. von Zanthier J; Becker T; Eichenseer M; Nevsky AY; Schwedes C; Peik E; Walther H; Holzwarth R; Reichert J; Udem T; Hänsch TW; Pokasov PV; Skvortsov MN; Bagayev SN Opt Lett; 2000 Dec; 25(23):1729-31. PubMed ID: 18066328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]