These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 16965021)
21. Multidimensional molecular steric opacity function for XeCl*(B, C) formation in the oriented Xe* (³P₂, MJ = 2) + oriented CCl₃F reaction. Ohoyama H J Phys Chem A; 2010 Nov; 114(43):11386-92. PubMed ID: 20919716 [TBL] [Abstract][Full Text] [Related]
22. Chemiluminescence from the Ba((3)P)+N(2)O-->BaO(A (1)Sigma(+))+N(2) reaction: Collision energy effects on the product rotational alignment and energy release. Rossa M; Rinaldi CA; Ferrero JC J Chem Phys; 2010 Jan; 132(3):034304. PubMed ID: 20095736 [TBL] [Abstract][Full Text] [Related]
23. Collision energy dependent cross section and rotational alignment of NO (A 2Σ+) in the energy-transfer reaction of N2 (A 3Σu+) + NO (X 2Π) → N2 (X 1Σg+) + NO (A 2Σ+). Ohoyama H J Phys Chem A; 2014 Oct; 118(41):9646-52. PubMed ID: 25253240 [TBL] [Abstract][Full Text] [Related]
24. Atomic alignment effects for the formation of excimers RgX* (B, C) in the reaction of oriented Rg ((3)P2, M(J) = 2) (Rg = Xe, Kr, Ar) + halogen(X)-containing molecules. Ohoyama H; Yasuda K; Kasai T J Phys Chem A; 2009 Dec; 113(52):14785-90. PubMed ID: 19591503 [TBL] [Abstract][Full Text] [Related]
25. Rovibrationally selected ion-molecule collision study using the molecular beam vacuum ultraviolet laser pulsed field ionization-photoion method: charge transfer reaction of N2(+)(X 2Σg+; v+ = 0-2; N+ = 0-9) + Ar. Chang YC; Xu Y; Lu Z; Xu H; Ng CY J Chem Phys; 2012 Sep; 137(10):104202. PubMed ID: 22979852 [TBL] [Abstract][Full Text] [Related]
26. Multidimensional steric effects for the XeI* (B, C) formations in the oriented Xe* (3P(2),M(J) = 2) + oriented CF3I reaction. Ohoyama H; Kubo F; Kasai T J Chem Phys; 2009 Oct; 131(13):134306. PubMed ID: 19814552 [TBL] [Abstract][Full Text] [Related]
27. Communication: rovibrationally selected study of the N2+(X; v+=1, N+= 0-8) + Ar charge transfer reaction using the vacuum ultraviolet laser pulsed field ionization-photoion method. Chang YC; Xu H; Xu Y; Lu Z; Chiu YH; Levandier DJ; Ng CY J Chem Phys; 2011 May; 134(20):201105. PubMed ID: 21639416 [TBL] [Abstract][Full Text] [Related]
28. Comparison of keV N2(+*)/He and N2(+*)/Ar collisions by emission spectroscopy and theory. Poon C; Lin Y; Mayer PM J Phys Chem A; 2008 Aug; 112(34):7761-7. PubMed ID: 18680262 [TBL] [Abstract][Full Text] [Related]
29. Chemiluminescent reaction of Ba(3P) with N2O at hyperthermal collision energies: rotational alignment of the BaO(A 1Sigma+) product. Rossa M; Rinaldi CA; Ferrero JC J Chem Phys; 2007 Aug; 127(6):064309. PubMed ID: 17705598 [TBL] [Abstract][Full Text] [Related]
30. Luminescence measurements of Xe(+) + N2 and Xe(2+) + N2 hyperthermal charge transfer collisions. Prince BD; Chiu YH J Chem Phys; 2011 Sep; 135(10):104308. PubMed ID: 21932894 [TBL] [Abstract][Full Text] [Related]
31. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702 [TBL] [Abstract][Full Text] [Related]
32. Correlation between the atomic alignment and the alignment of XeX* (B, C) rotation in the reactions of oriented Xe ((3)P(2), M(J) = 2) + halogen (X)-containing molecules. Ohoyama H; Yasuda K; Kasai T J Phys Chem A; 2009 Oct; 113(40):10641-7. PubMed ID: 19751058 [TBL] [Abstract][Full Text] [Related]
33. Electron transfer from sodium to oriented nitromethane, CH3NO2: probing the spatial extent of unoccupied orbitals. Brooks PR; Harland PW; Redden CE J Am Chem Soc; 2006 Apr; 128(14):4773-8. PubMed ID: 16594714 [TBL] [Abstract][Full Text] [Related]
34. Alignment selection of the metastable CO(a 3Π1) molecule and the steric effect in the aligned CO(a 3Π1) + NO collision. Nakamura M; Che DC; Tsai PY; Lin KC; Kasai T J Phys Chem A; 2013 Aug; 117(34):8157-62. PubMed ID: 23829701 [TBL] [Abstract][Full Text] [Related]
35. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence. Liu CL; Hsu HC; Hsu YC; Ni CK J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751 [TBL] [Abstract][Full Text] [Related]
36. Energy transfer of highly vibrationally excited 2-methylnaphthalene: Methylation effects. Hsu HC; Liu CL; Hsu YC; Ni CK J Chem Phys; 2008 Jul; 129(4):044301. PubMed ID: 18681640 [TBL] [Abstract][Full Text] [Related]
37. The effects of energy-level resonance on collision-induced electronic energy transfer: CD (A (2)Delta<--> B (2)Sigma(-)) coupling. Richmond G; Costen ML; McKendrick KG Phys Chem Chem Phys; 2007 Apr; 9(13):1568-78. PubMed ID: 17429550 [TBL] [Abstract][Full Text] [Related]
38. Supercollisions and energy transfer of highly vibrationally excited molecules. Liu CL; Hsu HC; Lyu JJ; Ni CK J Chem Phys; 2005 Oct; 123(13):131102. PubMed ID: 16223268 [TBL] [Abstract][Full Text] [Related]
39. Steric effects in electron transfer from potassium to pi-bonded oriented molecules CH3CN, CH3NC, and CCl3CN. Brooks PR; Harland PW; Harris SA; Kennair T; Redden C; Tate JF J Am Chem Soc; 2007 Dec; 129(50):15572-80. PubMed ID: 18041832 [TBL] [Abstract][Full Text] [Related]
40. Steric effects in the scattering of oriented CH3Cl molecular beam from a graphite surface: weak interaction of physisorption. Fukuyama T; Okada M; Kasai T J Phys Chem A; 2009 Dec; 113(52):14749-54. PubMed ID: 20028169 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]