These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

729 related articles for article (PubMed ID: 16965095)

  • 1. Freezing-in and production of entropy in vitrification.
    Möller J; Gutzow I; Schmelzer JW
    J Chem Phys; 2006 Sep; 125(9):094505. PubMed ID: 16965095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Prigogine-Defay ratio revisited.
    Schmelzer JW; Gutzow I
    J Chem Phys; 2006 Nov; 125(18):184511. PubMed ID: 17115769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature of systems out of thermodynamic equilibrium.
    Garden JL; Richard J; Guillou H
    J Chem Phys; 2008 Jul; 129(4):044508. PubMed ID: 18681661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the theoretical determination of the Prigogine-Defay ratio in glass transition.
    Tropin TV; Schmelzer JW; Gutzow I; Schick C
    J Chem Phys; 2012 Mar; 136(12):124502. PubMed ID: 22462869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of intermediate-range orders in the viscosity-temperature relationship of supercooled liquids and glasses.
    Kobayashi H; Takahashi H
    J Chem Phys; 2010 Mar; 132(10):104504. PubMed ID: 20232968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of the width of the glass transition interval on cooling and heating rates.
    Schmelzer JW; Tropin TV
    J Chem Phys; 2013 Jan; 138(3):034507. PubMed ID: 23343285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems.
    Mauro JC; Loucks RJ; Sen S
    J Chem Phys; 2010 Oct; 133(16):164503. PubMed ID: 21033801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic criteria of glass formation and the pressure dependence of the glass transition temperature.
    Schmelzer JW
    J Chem Phys; 2012 Feb; 136(7):074512. PubMed ID: 22360253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple model of entropy relaxation for explaining effective activation energy behavior below the glass transition temperature.
    Bisquert J; Henn F; Giuntini JC
    J Chem Phys; 2005 Mar; 122(9):094507. PubMed ID: 15836150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the entropy theory of glass formation to poly(alpha-olefins).
    Stukalin EB; Douglas JF; Freed KF
    J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enthalpy relaxation upon glass transition and kinetic fragility of molecular liquids.
    Wang LM
    J Phys Chem B; 2009 Apr; 113(15):5168-71. PubMed ID: 19267441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation and Prigogine-Defay ratio of compressed glasses with negative viscosity-pressure dependence.
    Wondraczek L; Krolikowski S; Behrens H
    J Chem Phys; 2009 May; 130(20):204506. PubMed ID: 19485456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fragility of glass-forming polymer liquids.
    Dudowicz J; Freed KF; Douglas JF
    J Phys Chem B; 2005 Nov; 109(45):21350-6. PubMed ID: 16853769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configurational entropy of binary hard-disk glasses: nonexistence of an ideal glass transition.
    Donev A; Stillinger FH; Torquato S
    J Chem Phys; 2007 Sep; 127(12):124509. PubMed ID: 17902923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic-kinetic correlations in supercooled liquids: a critical survey of experimental data and predictions of the random first-order transition theory of glasses.
    Stevenson JD; Wolynes PG
    J Phys Chem B; 2005 Aug; 109(31):15093-7. PubMed ID: 16852910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy theory of polymer glass formation revisited. I. General formulation.
    Dudowicz J; Freed KF; Douglas JF
    J Chem Phys; 2006 Feb; 124(6):64901. PubMed ID: 16483238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetric kinetics of protein structural changes.
    Marchal S; Font J; Ribó M; Vilanova M; Phillips RS; Lange R; Torrent J
    Acc Chem Res; 2009 Jun; 42(6):778-87. PubMed ID: 19378977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications.
    Kleidon A
    Naturwissenschaften; 2009 Jun; 96(6):653-77. PubMed ID: 19241052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.