These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16965781)

  • 1. Chromatographic elution profile of an analyte involved in reversible chemical reaction of the type A + B <--> AB.
    Kanatyeva AY
    J Chromatogr A; 2007 May; 1150(1-2):112-6. PubMed ID: 16965781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic chromatography: A stochastic approach.
    Pasti L; Cavazzini A; Nassi M; Dondi F
    J Chromatogr A; 2010 Feb; 1217(7):1000-9. PubMed ID: 19896134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakthrough curves and elution profiles of single solutes in case of adsorption isotherms with two inflection points.
    Zhang W; Shan Y; Seidel-Morgenstern A
    J Chromatogr A; 2006 Feb; 1107(1-2):216-25. PubMed ID: 16442120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of the accuracy of the pulse method, frontal analysis, and frontal analysis by characteristic points for the determination of single component adsorption isotherms.
    Andrzejewska A; Kaczmarski K; Guiochon G
    J Chromatogr A; 2009 Feb; 1216(7):1067-83. PubMed ID: 19147153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic errors in the measurement of adsorption isotherms by frontal analysis Impact of the choice of column hold-up volume, range and density of the data points.
    Gritti F; Guiochon G
    J Chromatogr A; 2005 Dec; 1097(1-2):98-115. PubMed ID: 16298189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of competitive adsorption isotherms applying the nonlinear frequency response method. Part I. Theoretical analysis.
    Ilić M; Petkovska M; Seidel-Morgenstern A
    J Chromatogr A; 2009 Aug; 1216(33):6098-107. PubMed ID: 19586632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of competitive isotherms of enantiomers by a hybrid inverse method using overloaded band profiles and the periodic state of the simulated moving-bed process.
    Araújo JM; Rodrigues RC; Mota JP
    J Chromatogr A; 2008 May; 1189(1-2):302-13. PubMed ID: 18243230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of competitive adsorption isotherms applying the nonlinear frequency response method. Part II. Experimental demonstration.
    Ilić M; Petkovska M; Seidel-Morgenstern A
    J Chromatogr A; 2009 Aug; 1216(33):6108-18. PubMed ID: 19586634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of frontal and nonfrontal methods for determining solid-liquid adsorption isotherms using inverse liquid chromatography.
    Ylä-Mäihäniemi PP; Williams DR
    Langmuir; 2007 Mar; 23(7):4095-101. PubMed ID: 17328566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioseparation of 1-phenyl-1-propanol on cellulose-derived chiral stationary phase by supercritical fluid chromatography II. Non-linear isotherm.
    Ottiger S; Kluge J; Rajendran A; Mazzotti M
    J Chromatogr A; 2007 Aug; 1162(1):74-82. PubMed ID: 17303143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unified equation for access to rate constants of first-order reactions in dynamic and on-column reaction chromatography.
    Trapp O
    Anal Chem; 2006 Jan; 78(1):189-98. PubMed ID: 16383327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the elution by characteristic point method for determination of various types of adsorption isotherms.
    Samuelsson J; Undin T; Fornstedt T
    J Chromatogr A; 2011 Jun; 1218(24):3737-42. PubMed ID: 21570689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of adsorption isotherms by means of HPLC: adsorption mechanism elucidation and separation optimization.
    Marchetti N; Cavazzini A; Pasti L; Dondi F
    J Sep Sci; 2009 Mar; 32(5-6):727-41. PubMed ID: 19194972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of adsorption isotherm measurements for closer elucidating of binding in chiral liquid chromatographic phase systems.
    Samuelsson J; Arnell R; Fornstedt T
    J Sep Sci; 2009 May; 32(10):1491-506. PubMed ID: 19472282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermodynamic limit of linear gradient chromatography.
    Ståhlberg J
    J Chromatogr A; 2010 May; 1217(19):3172-9. PubMed ID: 20227704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of Liquiritin by simulated moving bed chromatography.
    Cong J; Lin B
    J Chromatogr A; 2007 Mar; 1145(1-2):190-4. PubMed ID: 17289063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical theory of multiple-site linear wall-adsorption capillary Chromatography.
    Chen Y; Tang Y
    J Chromatogr A; 2009 Feb; 1216(7):1132-9. PubMed ID: 19136116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical determination of competitive adsorption isotherm of mandelic acid enantiomers on cellulose-based chiral stationary phase.
    Zhang Y; Rohani S; Ray AK
    J Chromatogr A; 2008 Aug; 1202(1):34-9. PubMed ID: 18602639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model free method for estimation of complicated adsorption isotherms in liquid chromatography.
    Forssén P; Fornstedt T
    J Chromatogr A; 2015 Aug; 1409():108-15. PubMed ID: 26209195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling and simulation of affinity membrane adsorption.
    Boi C; Dimartino S; Sarti GC
    J Chromatogr A; 2007 Aug; 1162(1):24-33. PubMed ID: 17331521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.