These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 16965979)

  • 21. Dual pulse shock wave lithotripsy: in vitro and in vivo study.
    Loske AM; Fernández F; Zendejas H; Paredes M; Castaño-Tostado E
    J Urol; 2005 Dec; 174(6):2388-92. PubMed ID: 16280853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of overpressure and pulse repetition frequency on cavitation in shock wave lithotripsy.
    Sapozhnikov OA; Khokhlova VA; Bailey MR; Williams JC; McAteer JA; Cleveland RO; Crum LA
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1183-95. PubMed ID: 12243163
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer.
    Chen H; Li X; Wan M; Wang S
    Ultrason Sonochem; 2007 Mar; 14(3):291-7. PubMed ID: 17071124
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.
    Johnston K; Tapia-Siles C; Gerold B; Postema M; Cochran S; Cuschieri A; Prentice P
    Ultrasonics; 2014 Dec; 54(8):2151-8. PubMed ID: 25015000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic applications of ultrasound.
    ter Haar G
    Prog Biophys Mol Biol; 2007; 93(1-3):111-29. PubMed ID: 16930682
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies.
    Melodelima D; Chapelon JY; Theillère Y; Cathignol D
    Ultrasound Med Biol; 2004 Jan; 30(1):103-11. PubMed ID: 14962614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of externally applied focused acoustic energy on clot disruption in vitro.
    Westermark S; Wiksell H; Elmqvist H; Hultenby K; Berglund H
    Clin Sci (Lond); 1999 Jul; 97(1):67-71. PubMed ID: 10369795
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Increased fragmentation efficiency by enhancement of cavitation for extracorporal shock wave lithotripsy].
    Loske AM; Fernández F; Gutiérrez J
    Z Med Phys; 2005; 15(1):53-8. PubMed ID: 15830785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of acoustic parameters on bubble cloud dynamics in ultrasound tissue erosion (histotripsy).
    Xu Z; Hall TL; Fowlkes JB; Cain CA
    J Acoust Soc Am; 2007 Jul; 122(1):229-36. PubMed ID: 17614482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1996; 22(8):1079-87. PubMed ID: 9004432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The relation between cavitation and platelet aggregation during exposure to high-intensity focused ultrasound.
    Poliachik SL; Chandler WL; Ollos RJ; Bailey MR; Crum LA
    Ultrasound Med Biol; 2004 Feb; 30(2):261-9. PubMed ID: 14998678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inertial cavitation and associated acoustic emission produced during electrohydraulic shock wave lithotripsy.
    Zhong P; Cioanta I; Cocks FH; Preminger GM
    J Acoust Soc Am; 1997 May; 101(5 Pt 1):2940-50. PubMed ID: 9165740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cavitation activation by dual-frequency ultrasound and shock waves.
    Brotchie A; Mettin R; Grieser F; Ashokkumar M
    Phys Chem Chem Phys; 2009 Nov; 11(43):10029-34. PubMed ID: 19865755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.
    Chitnis PV; Cleveland RO
    J Acoust Soc Am; 2006 Apr; 119(4):1929-32. PubMed ID: 16642802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound.
    Chen H; Li X; Wan M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The use of resonant scattering to identify stone fracture in shock wave lithotripsy.
    Owen NR; Bailey MR; Crum LA; Sapozhnikov OA; Trusov LA
    J Acoust Soc Am; 2007 Jan; 121(1):EL41-7. PubMed ID: 17297825
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound.
    Barati AH; Mokhtari-Dizaji M; Mozdarani H; Bathaie Z; Hassan ZM
    Ultrason Sonochem; 2007 Sep; 14(6):783-9. PubMed ID: 17347019
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of mechanical heart valve cavitation in a pneumatic ventricular assist device.
    Lee H; Taenaka Y
    Artif Organs; 2008 Jun; 32(6):453-60. PubMed ID: 18422801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.
    Zhou Y; Wang X
    Ultrasonics; 2018 Mar; 84():296-309. PubMed ID: 29182946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.