These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 1696605)

  • 1. Granulocyte macrophage--colony-stimulating factor (GM-CSF) decreases CD1a expression by human Langerhans cells and increases proliferation in the mixed epidermal cell-lymphocyte reaction (MELR).
    Kolenik S; Ding TG; Longley J
    J Invest Dermatol; 1990 Sep; 95(3):359-62. PubMed ID: 1696605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation.
    Koch F; Heufler C; Kämpgen E; Schneeweiss D; Böck G; Schuler G
    J Exp Med; 1990 Jan; 171(1):159-71. PubMed ID: 2404080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Granulocyte/macrophage colony-stimulating factor is essential for the viability and function of cultured murine epidermal Langerhans cells.
    Witmer-Pack MD; Olivier W; Valinsky J; Schuler G; Steinman RM
    J Exp Med; 1987 Nov; 166(5):1484-98. PubMed ID: 2445889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Granulocyte/macrophage colony-stimulating factor and interleukin 1 mediate the maturation of murine epidermal Langerhans cells into potent immunostimulatory dendritic cells.
    Heufler C; Koch F; Schuler G
    J Exp Med; 1988 Feb; 167(2):700-5. PubMed ID: 3279156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleukin-3 cooperates with tumor necrosis factor alpha for the development of human dendritic/Langerhans cells from cord blood CD34+ hematopoietic progenitor cells.
    Caux C; Vanbervliet B; Massacrier C; Durand I; Banchereau J
    Blood; 1996 Mar; 87(6):2376-85. PubMed ID: 8630401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of dendritic cells from adherent cells of cord blood by culture with granulocyte-macrophage colony-stimulating factor, interleukin-4, and tumor necrosis factor-alpha.
    Zheng Z; Takahashi M; Narita M; Toba K; Liu A; Furukawa T; Koike T; Aizawa Y
    J Hematother Stem Cell Res; 2000 Aug; 9(4):453-64. PubMed ID: 10982243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentiating effect of granulocyte-macrophage colony-stimulating factor on interleukin-1-induced thymocyte proliferation: evidence for an interleukin-2 and tumor necrosis factor-independent pathway.
    Herbelin A; Machavoine F; Dy M
    Lymphokine Res; 1990; 9(2):155-65. PubMed ID: 2187117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Special susceptibility to apoptosis of CD1a+ dendritic cell precursors differentiating from cord blood CD34+ progenitors.
    Canque B; Camus S; Yagello M; Gluckman JC
    Stem Cells; 1998; 16(3):218-28. PubMed ID: 9617897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemopoietin-1 activity of interleukin-1 (IL-1) on acute myeloid leukemia colony-forming cells (AML-CFU) in vitro: IL-1 induces production of tumor necrosis factor-alpha which synergizes with IL-3 or granulocyte-macrophage colony-stimulating factor.
    Delwel R; van Buitenen C; Salem M; Oosterom R; Touw I; Löwenberg B
    Leukemia; 1990 Aug; 4(8):557-60. PubMed ID: 2201834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of granulocyte macrophage-colony stimulating factor on Langerhans cells in normal and healthy atopic subjects.
    Smith CH; Allen MH; Groves RW; Barker JN
    Br J Dermatol; 1998 Aug; 139(2):239-46. PubMed ID: 9767237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD1a+ and CD1a- accessory cells from human bronchoalveolar lavage differ in allostimulatory potential and cytokine production.
    van Haarst JM; Verhoeven GT; de Wit HJ; Hoogsteden HC; Debets R; Drexhage HA
    Am J Respir Cell Mol Biol; 1996 Dec; 15(6):752-9. PubMed ID: 8969270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amplification of IL-2-driven T cell proliferation by recombinant human IL-3 and granulocyte-macrophage colony-stimulating factor.
    Santoli D; Clark SC; Kreider BL; Maslin PA; Rovera G
    J Immunol; 1988 Jul; 141(2):519-26. PubMed ID: 3290340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34+ progenitors in human bone marrow.
    Reid CD; Stackpoole A; Meager A; Tikerpae J
    J Immunol; 1992 Oct; 149(8):2681-8. PubMed ID: 1383322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow cytometric analysis of cytokine receptors on human Langerhans' cells. Changes observed after short-term culture.
    Larregina A; Morelli A; Kolkowski E; Fainboim L
    Immunology; 1996 Feb; 87(2):317-25. PubMed ID: 8698397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macrophage colony-stimulating factor in cooperation with transforming growth factor-beta1 induces the differentiation of CD34+ hematopoietic progenitor cells into Langerhans cells under serum-free conditions without granulocyte-macrophage colony-stimulating factor.
    Mollah ZU; Aiba S; Nakagawa S; Hara M; Manome H; Mizuashi M; Ohtani T; Yoshino Y; Tagami H
    J Invest Dermatol; 2003 Feb; 120(2):256-65. PubMed ID: 12542531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity.
    Young DA; Lowe LD; Clark SC
    J Immunol; 1990 Jul; 145(2):607-15. PubMed ID: 2142182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-3 in cooperation with transforming growth factor beta induces granulocyte macrophage colony stimulating factor independent differentiation of human CD34+ hematopoietic progenitor cells into dendritic cells with features of Langerhans cells.
    Mollah ZU; Aiba S; Nakagawa S; Mizuashi M; Ohtani T; Yoshino Y; Tagami H
    J Invest Dermatol; 2003 Dec; 121(6):1397-401. PubMed ID: 14675189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the differentiation state and function of human epidermal Langerhans cells by cytokines in vitro.
    Prignano F; Gerlini G; Fossombroni V; Pimpinelli N; Giannotti B; Nestle FO; Romagnoli P
    J Eur Acad Dermatol Venereol; 2001 Sep; 15(5):433-40. PubMed ID: 11763385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of human hematopoietic progenitor cell proliferation and differentiation by recombinant human interleukin 3. Comparison and interactions with recombinant human granulocyte-macrophage and granulocyte colony-stimulating factors.
    Ottmann OG; Abboud M; Welte K; Souza LM; Pelus LM
    Exp Hematol; 1989 Feb; 17(2):191-7. PubMed ID: 2463933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of human dendritic cells/Langerhans cells from circulating CD34+ hematopoietic progenitor cells.
    Strunk D; Rappersberger K; Egger C; Strobl H; Krömer E; Elbe A; Maurer D; Stingl G
    Blood; 1996 Feb; 87(4):1292-302. PubMed ID: 8608217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.