BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

599 related articles for article (PubMed ID: 16966475)

  • 1. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel.
    Tsai MF; Li M; Hwang TC
    J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating.
    Basso C; Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains.
    Vergani P; Lockless SW; Nairn AC; Gadsby DC
    Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains.
    Powe AC; Al-Nakkash L; Li M; Hwang TC
    J Physiol; 2002 Mar; 539(Pt 2):333-46. PubMed ID: 11882668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the mechanism of MgATP-dependent gating of CFTR Cl- channels.
    Vergani P; Nairn AC; Gadsby DC
    J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis.
    Bompadre SG; Hwang TC
    Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog.
    Bompadre SG; Li M; Hwang TC
    J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the CFTR channel's gates.
    Vergani P; Basso C; Mense M; Nairn AC; Gadsby DC
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1003-7. PubMed ID: 16246032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CFTR gating II: Effects of nucleotide binding on the stability of open states.
    Bompadre SG; Cho JH; Wang X; Zou X; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2005 Apr; 125(4):377-94. PubMed ID: 15767296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent modulation of CFTR gating by pyrophosphate.
    Tsai MF; Shimizu H; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2009 Apr; 133(4):405-19. PubMed ID: 19332621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects.
    Bompadre SG; Sohma Y; Li M; Hwang TC
    J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating.
    Szollosi A; Muallem DR; Csanády L; Vergani P
    J Gen Physiol; 2011 Jun; 137(6):549-62. PubMed ID: 21576373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation.
    Jih KY; Sohma Y; Hwang TC
    J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains.
    Wang W; Bernard K; Li G; Kirk KL
    J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.