These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
600 related articles for article (PubMed ID: 16966475)
1. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics. Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475 [TBL] [Abstract][Full Text] [Related]
2. Stable ATP binding mediated by a partial NBD dimer of the CFTR chloride channel. Tsai MF; Li M; Hwang TC J Gen Physiol; 2010 May; 135(5):399-414. PubMed ID: 20421370 [TBL] [Abstract][Full Text] [Related]
3. Prolonged nonhydrolytic interaction of nucleotide with CFTR's NH2-terminal nucleotide binding domain and its role in channel gating. Basso C; Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Sep; 122(3):333-48. PubMed ID: 12939393 [TBL] [Abstract][Full Text] [Related]
4. CFTR channel opening by ATP-driven tight dimerization of its nucleotide-binding domains. Vergani P; Lockless SW; Nairn AC; Gadsby DC Nature; 2005 Feb; 433(7028):876-80. PubMed ID: 15729345 [TBL] [Abstract][Full Text] [Related]
5. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator. Yu YC; Sohma Y; Hwang TC J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474 [TBL] [Abstract][Full Text] [Related]
6. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain. Csanády L; Chan KW; Nairn AC; Gadsby DC J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536 [TBL] [Abstract][Full Text] [Related]
7. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme. Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935 [TBL] [Abstract][Full Text] [Related]
8. Mutation of Walker-A lysine 464 in cystic fibrosis transmembrane conductance regulator reveals functional interaction between its nucleotide-binding domains. Powe AC; Al-Nakkash L; Li M; Hwang TC J Physiol; 2002 Mar; 539(Pt 2):333-46. PubMed ID: 11882668 [TBL] [Abstract][Full Text] [Related]
9. On the mechanism of MgATP-dependent gating of CFTR Cl- channels. Vergani P; Nairn AC; Gadsby DC J Gen Physiol; 2003 Jan; 121(1):17-36. PubMed ID: 12508051 [TBL] [Abstract][Full Text] [Related]
10. Cystic fibrosis transmembrane conductance regulator: a chloride channel gated by ATP binding and hydrolysis. Bompadre SG; Hwang TC Sheng Li Xue Bao; 2007 Aug; 59(4):431-42. PubMed ID: 17700963 [TBL] [Abstract][Full Text] [Related]
11. Mechanism of G551D-CFTR (cystic fibrosis transmembrane conductance regulator) potentiation by a high affinity ATP analog. Bompadre SG; Li M; Hwang TC J Biol Chem; 2008 Feb; 283(9):5364-9. PubMed ID: 18167357 [TBL] [Abstract][Full Text] [Related]
12. Control of the CFTR channel's gates. Vergani P; Basso C; Mense M; Nairn AC; Gadsby DC Biochem Soc Trans; 2005 Nov; 33(Pt 5):1003-7. PubMed ID: 16246032 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle. Csanády L; Nairn AC; Gadsby DC J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148 [TBL] [Abstract][Full Text] [Related]
14. CFTR gating II: Effects of nucleotide binding on the stability of open states. Bompadre SG; Cho JH; Wang X; Zou X; Sohma Y; Li M; Hwang TC J Gen Physiol; 2005 Apr; 125(4):377-94. PubMed ID: 15767296 [TBL] [Abstract][Full Text] [Related]
15. State-dependent modulation of CFTR gating by pyrophosphate. Tsai MF; Shimizu H; Sohma Y; Li M; Hwang TC J Gen Physiol; 2009 Apr; 133(4):405-19. PubMed ID: 19332621 [TBL] [Abstract][Full Text] [Related]
16. G551D and G1349D, two CF-associated mutations in the signature sequences of CFTR, exhibit distinct gating defects. Bompadre SG; Sohma Y; Li M; Hwang TC J Gen Physiol; 2007 Apr; 129(4):285-98. PubMed ID: 17353351 [TBL] [Abstract][Full Text] [Related]
17. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR. Jih KY; Li M; Hwang TC; Bompadre SG J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785 [TBL] [Abstract][Full Text] [Related]
18. Mutant cycles at CFTR's non-canonical ATP-binding site support little interface separation during gating. Szollosi A; Muallem DR; Csanády L; Vergani P J Gen Physiol; 2011 Jun; 137(6):549-62. PubMed ID: 21576373 [TBL] [Abstract][Full Text] [Related]
19. Nonintegral stoichiometry in CFTR gating revealed by a pore-lining mutation. Jih KY; Sohma Y; Hwang TC J Gen Physiol; 2012 Oct; 140(4):347-59. PubMed ID: 22966014 [TBL] [Abstract][Full Text] [Related]
20. Curcumin opens cystic fibrosis transmembrane conductance regulator channels by a novel mechanism that requires neither ATP binding nor dimerization of the nucleotide-binding domains. Wang W; Bernard K; Li G; Kirk KL J Biol Chem; 2007 Feb; 282(7):4533-4544. PubMed ID: 17178710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]