These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16966861)

  • 41. Complex viscoelasticity of normal and lectin treated erythrocytes using laser diffractometry.
    Riquelme BD; Valverde J; Rasia RJ
    Biorheology; 1998; 35(4-5):325-34. PubMed ID: 10474658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of plasma in the yield stress of blood.
    Windberger U; Sparer A; Elsayad K
    Clin Hemorheol Microcirc; 2023; 84(4):369-383. PubMed ID: 37334582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Linear viscoelastic behavior of subcutaneous adipose tissue.
    Geerligs M; Peters GW; Ackermans PA; Oomens CW; Baaijens FP
    Biorheology; 2008; 45(6):677-88. PubMed ID: 19065014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic shear properties of the porcine molar periodontal ligament.
    Tanaka E; Inubushi T; Takahashi K; Shirakura M; Sano R; Dalla-Bona DA; Nakajima A; van Eijden TM; Tanne K
    J Biomech; 2007; 40(7):1477-83. PubMed ID: 16949081
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Temperature dependency of whole blood viscosity and red cell properties in desert ungulates: Studies on scimitar-horned oryx and dromedary camel.
    Windberger U; Auer R; Plasenzotti R; Eloff S; Skidmore JA
    Clin Hemorheol Microcirc; 2018; 69(4):533-543. PubMed ID: 29710697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [A study of RBC relaxation process by use of resistivity method].
    Yang Y; Sun D; Song L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1997 Dec; 14(4):330-3. PubMed ID: 11367621
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [The effect of different plasma substitutes on the viscoelastic properties of blood. Comparison with human albumin].
    Gaillard S; Larcan A; Stoltz JF
    Agressologie; 1979; 20(5):287-91. PubMed ID: 12679960
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell stretching measurement utilizing viscoelastic particle focusing.
    Cha S; Shin T; Lee SS; Shim W; Lee G; Lee SJ; Kim Y; Kim JM
    Anal Chem; 2012 Dec; 84(23):10471-7. PubMed ID: 23163397
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Viscoelastic material model for the temporomandibular joint disc derived from dynamic shear tests or strain-relaxation tests.
    Koolstra JH; Tanaka E; Van Eijden TM
    J Biomech; 2007; 40(10):2330-4. PubMed ID: 17141788
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The changes of red blood cell viscoelasticity and sports anemia in male 24-hr ultra-marathoners.
    Liu CH; Tseng YF; Lai JI; Chen YQ; Wang SH; Kao WF; Li LH; Chiu YH; How CK; Chang WH
    J Chin Med Assoc; 2018 May; 81(5):475-481. PubMed ID: 29133160
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of a new perfluorocarbon emulsion on human plasma and whole-blood viscosity in the presence of albumin, hydroxyethyl starch, or modified fluid gelatin: an in vitro rheologic approach.
    Jouan-Hureaux V; Audonnet-Blaise S; Lacatusu D; Krafft MP; Dewachter P; Cauchois G; Stoltz JF; Longrois D; Menu P
    Transfusion; 2006 Nov; 46(11):1892-8. PubMed ID: 17076843
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effect of thrombocytapheresis on blood rheology in healthy donors: role of nitric oxide.
    Bor-Kucukatay M; Keskin A; Akdam H; Kabukcu-hacioglu S; Erken G; Atsak P; Kucukatay V
    Transfus Apher Sci; 2008 Oct; 39(2):101-8. PubMed ID: 18707921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How preservation time changes the linear viscoelastic properties of porcine liver.
    Wex C; Stoll A; Fröhlich M; Arndt S; Lippert H
    Biorheology; 2013; 50(3-4):115-31. PubMed ID: 23863278
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The applicability of the time/temperature superposition principle to brain tissue.
    Peters GW; Meulman JH; Sauren AA
    Biorheology; 1997; 34(2):127-38. PubMed ID: 9373395
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparison of Blood Viscoelasticity in Pediatric and Adult Cardiac Patients.
    Sharp MK; Gregg M; Brock G; Nair N; Sahetya S; Austin EH; Mascio C; Slaughter MD; Pantalos GM
    Cardiovasc Eng Technol; 2017 Jun; 8(2):182-192. PubMed ID: 28283942
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Stored erythrocytes have less capacity than normal erythrocytes to support primary haemostasis.
    Reinhart WH; Zehnder L; Schulzki T
    Thromb Haemost; 2009 Apr; 101(4):720-3. PubMed ID: 19350117
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine.
    Pop GA; Chang ZY; Slager CJ; Kooij BJ; van Deel ED; Moraru L; Quak J; Meijer GC; Duncker DJ
    Biosens Bioelectron; 2004 Jul; 19(12):1685-93. PubMed ID: 15142603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.