These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 16967033)

  • 1. A hydroxyapatite graft substitute reduces subsidence in a femoral impaction grafting model.
    Munro NA; Downing MR; Meakin JR; Lee AJ; Ashcroft GP
    Clin Orthop Relat Res; 2007 Feb; 455():246-52. PubMed ID: 16967033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impaction bone grafting with hydroxyapatite: increased femoral component stability in experiments using Sawbones.
    Fujishiro T; Nishikawa T; Niikura T; Takikawa S; Nishiyama T; Mizuno K; Yoshiya S; Kurosaka M
    Acta Orthop; 2005 Aug; 76(4):550-4. PubMed ID: 16195073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preclinical study of stem subsidence and graft incorporation after femoral impaction grafting using porous hydroxyapatite as a bone graft extender.
    Howie DW; McGee MA; Callary SA; Carbone A; Stamenkov RB; Bruce WJ; Findlay DM
    J Arthroplasty; 2011 Oct; 26(7):1050-6. PubMed ID: 21802252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro cyclic testing of the Exeter stem after cement within cement revision.
    Wilson LJ; Bell CG; Weinrauch P; Crawford R
    J Arthroplasty; 2009 Aug; 24(5):789-94. PubMed ID: 18534400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of the addition of hydroxyapatite graft substitutes upon the hoop strain and subsequent subsidence of a femoral model during impaction bone grafting.
    McNamara IR; Rayment A; Brooks R; Best S; Rushton N
    J Mech Behav Biomed Mater; 2012 Jan; 5(1):238-46. PubMed ID: 22100099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The load carrying and fatigue properties of the stem-cement interface with smooth and porous coated femoral components.
    Manley MT; Stern LS; Gurtowski J
    J Biomed Mater Res; 1985; 19(5):563-75. PubMed ID: 4066729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characteristics of impaction allografting for revision total hip arthroplasty.
    Robinson MC; Fernlund G; Dominic Meek RM; Masri BA; Duncan CP; Oxland TR
    Clin Biomech (Bristol); 2005 Oct; 20(8):853-5. PubMed ID: 16023774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Early aseptic loosening of the CF 30 femoral stem].
    Kovanda M; HavlĂ­cek V; Hudec J
    Acta Chir Orthop Traumatol Cech; 2007 Feb; 74(1):59-64. PubMed ID: 17331456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characteristics of the bone-graft-cement interface after impaction allografting.
    Frei H; Mitchell P; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Jan; 23(1):9-17. PubMed ID: 15607869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological and mechanical changes of the bone graft-cement interface after impaction allografting.
    Frei H; O'Connell J; Masri BA; Duncan CP; Oxland TR
    J Orthop Res; 2005 Nov; 23(6):1271-9. PubMed ID: 15964167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strontium-containing hydroxyapatite bioactive bone cement in revision hip arthroplasty.
    Ni GX; Chiu KY; Lu WW; Wang Y; Zhang YG; Hao LB; Li ZY; Lam WM; Lu SB; Luk KD
    Biomaterials; 2006 Aug; 27(24):4348-55. PubMed ID: 16647752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological and biomechanical study of impacted cancellous allografts with cement in the femur: a canine model.
    Omoto O; Yasunaga Y; Adachi N; Deie M; Ochi M
    Arch Orthop Trauma Surg; 2008 Dec; 128(12):1357-64. PubMed ID: 18758792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro analysis of exeter stem torsional stability.
    Bell CG; Weinrauch P; Pearcy M; Crawford R
    J Arthroplasty; 2007 Oct; 22(7):1024-30. PubMed ID: 17920476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impaction grafting with a bone-graft substitute in a sheep model of revision hip replacement.
    Coathup M; Smith N; Kingsley C; Buckland T; Dattani R; Ascroft GP; Blunn G
    J Bone Joint Surg Br; 2008 Feb; 90(2):246-53. PubMed ID: 18256099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impaction bone grafting with freeze-dried irradiated bone. Part I. Femoral implant stability: cadaver experiments in a hip simulator.
    Cornu O; Bavadekar A; Godts B; Van Tomme J; Delloye C; Banse X
    Acta Orthop Scand; 2003 Oct; 74(5):547-52. PubMed ID: 14620974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of modular tapered fluted stems on proximal stress shielding in the human femur.
    Hnat WP; Conway JS; Malkani AL; Yakkanti MR; Voor MJ
    J Arthroplasty; 2009 Sep; 24(6):957-62. PubMed ID: 18848422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancellous and cortical morselized allograft in revision total hip replacement: A biomechanical study of implant stability.
    Kligman M; Rotem A; Roffman M
    J Biomech; 2003 Jun; 36(6):797-802. PubMed ID: 12742447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subsidence in impaction grafting: the effect of adding a ceramic bone graft extender to bone.
    Blom AW; Grimm B; Miles AW; Cunningham JL; Learmonth ID
    Proc Inst Mech Eng H; 2002; 216(4):265-70. PubMed ID: 12206523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro testing of femoral impaction grafting with porous titanium particles: a pilot study.
    Aquarius R; Walschot L; Buma P; Schreurs BW; Verdonschot N
    Clin Orthop Relat Res; 2009 Jun; 467(6):1538-45. PubMed ID: 19139968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vibration-assisted bone-graft compaction in impaction bone grafting of the femur.
    Bolland BJ; New AM; Madabhushi SP; Oreffo RO; Dunlop DG
    J Bone Joint Surg Br; 2007 May; 89(5):686-92. PubMed ID: 17540758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.