BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16967048)

  • 1. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery.
    Stankevicius E; Lopez-Valverde V; Rivera L; Hughes AD; Mulvany MJ; Simonsen U
    Br J Pharmacol; 2006 Nov; 149(5):560-72. PubMed ID: 16967048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening of small and intermediate calcium-activated potassium channels induces relaxation mainly mediated by nitric-oxide release in large arteries and endothelium-derived hyperpolarizing factor in small arteries from rat.
    Stankevicius E; Dalsgaard T; Kroigaard C; Beck L; Boedtkjer E; Misfeldt MW; Nielsen G; Schjorring O; Hughes A; Simonsen U
    J Pharmacol Exp Ther; 2011 Dec; 339(3):842-50. PubMed ID: 21880870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular target of voltage and calcium-dependent K(+) channel blockers involved in EDHF-mediated responses in rat superior mesenteric artery.
    Ghisdal P; Morel N
    Br J Pharmacol; 2001 Nov; 134(5):1021-8. PubMed ID: 11682450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different modulation by Ca2+-activated K+ channel blockers and herbimycin of acetylcholine- and flow-evoked vasodilatation in rat mesenteric small arteries.
    Thorsgaard M; Lopez V; Buus NH; Simonsen U
    Br J Pharmacol; 2003 Apr; 138(8):1562-70. PubMed ID: 12721112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF.
    Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED
    Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The contribution of d-tubocurarine-sensitive and apamin-sensitive K-channels to EDHF-mediated relaxation of mesenteric arteries from eNOS-/- mice.
    Chen X; Li Y; Hollenberg M; Triggle CR; Ding H
    J Cardiovasc Pharmacol; 2012 May; 59(5):413-25. PubMed ID: 22217882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Urocortin induces endothelium-dependent vasodilatation and hyperpolarization of rat mesenteric arteries by activating Ca2+-activated K+ channels.
    Seçilmiş MA; Ozü OY; Emre M; Büyükafşar K; Kiroglu OE; Ertuğ P; Karataş Y; Onder S; Singirik E
    Tohoku J Exp Med; 2007 Sep; 213(1):89-98. PubMed ID: 17785957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta.
    Qiu Y; Quilley J
    Med Sci Monit; 2001; 7(6):1129-36. PubMed ID: 11687720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery.
    Crane GJ; Gallagher N; Dora KA; Garland CJ
    J Physiol; 2003 Nov; 553(Pt 1):183-9. PubMed ID: 14555724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging impairs electrical conduction along endothelium of resistance arteries through enhanced Ca2+-activated K+ channel activation.
    Behringer EJ; Shaw RL; Westcott EB; Socha MJ; Segal SS
    Arterioscler Thromb Vasc Biol; 2013 Aug; 33(8):1892-901. PubMed ID: 23723370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats.
    Jiang F; Dusting GJ
    Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of calcium-activated potassium channels in acetylcholine-induced vasodilation of rat retinal arterioles in vivo.
    Mori A; Suzuki S; Sakamoto K; Nakahara T; Ishii K
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Jan; 383(1):27-34. PubMed ID: 20978884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of EDHF in the vasodilatory effect of loop diuretics in guinea-pig mesenteric resistance arteries.
    Pourageaud F; Bappel-Gozalbes C; Marthan R; Freslon JL
    Br J Pharmacol; 2000 Nov; 131(6):1211-9. PubMed ID: 11082130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed.
    Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC
    Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro simultaneous measurements of relaxation and nitric oxide concentration in rat superior mesenteric artery.
    Simonsen U; Wadsworth RM; Buus NH; Mulvany MJ
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):271-82. PubMed ID: 10066940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.