These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16967325)

  • 61. An automatic robust meshing algorithm for soft tissue modeling.
    Seifert S; Boehler S; Sudra G; Dillmann R
    Stud Health Technol Inform; 2005; 111():443-6. PubMed ID: 15718775
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Finite element dynamic analysis of soft tissues using state-space model.
    Iorga LN; Shan B; Pelegri AA
    Comput Methods Biomech Biomed Engin; 2009 Apr; 12(2):197-209. PubMed ID: 19242834
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Soft tissue modelling of cardiac fibres for use in coupled mechano-electric simulations.
    Whiteley JP; Bishop MJ; Gavaghan DJ
    Bull Math Biol; 2007 Oct; 69(7):2199-225. PubMed ID: 17453303
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Coupling between elastic strain and interstitial fluid flow: ramifications for poroelastic imaging.
    Leiderman R; Barbone PE; Oberai AA; Bamber JC
    Phys Med Biol; 2006 Dec; 51(24):6291-313. PubMed ID: 17148819
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A dual optimization method for the material parameter identification of a biphasic poroviscoelastic hydrogel: Potential application to hypercompliant soft tissues.
    Olberding JE; Francis Suh JK
    J Biomech; 2006; 39(13):2468-75. PubMed ID: 16153650
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Analysis of viscoelastic wall properties in ovine arteries.
    Valdez-Jasso D; Haider MA; Banks HT; Bia Santana D; Zócalo Germán Y; Armentano RL; Olufsen MS
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):210-9. PubMed ID: 19272946
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms.
    Lu J; Zhou X; Raghavan ML
    J Biomech; 2007; 40(3):693-6. PubMed ID: 16542663
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A method for partitioned fluid-structure interaction computation of flow in arteries.
    Järvinen E; Råback P; Lyly M; Salenius JP
    Med Eng Phys; 2008 Sep; 30(7):917-23. PubMed ID: 18243762
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Quantitative viscoelastic parameters measured by harmonic motion imaging.
    Vappou J; Maleke C; Konofagou EE
    Phys Med Biol; 2009 Jun; 54(11):3579-94. PubMed ID: 19454785
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of biaxial tension tests of soft tissues.
    Bursa J; Zemanek M
    Stud Health Technol Inform; 2008; 133():45-55. PubMed ID: 18376012
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Shear elasticity estimation from surface wave: the time reversal approach.
    Brum J; Catheline S; Benech N; Negreira C
    J Acoust Soc Am; 2008 Dec; 124(6):3377-80. PubMed ID: 19206764
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study.
    Wenk JF
    J Biomech Eng; 2011 Jan; 133(1):014503. PubMed ID: 21186905
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Identification of heterogeneous elastic properties in stenosed arteries: a numerical plane strain study.
    Franquet A; Avril S; Le Riche R; Badel P
    Comput Methods Biomech Biomed Engin; 2012; 15(1):49-58. PubMed ID: 21607891
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of freezing and cryopreservation on the mechanical properties of arteries.
    Venkatasubramanian RT; Grassl ED; Barocas VH; Lafontaine D; Bischof JC
    Ann Biomed Eng; 2006 May; 34(5):823-32. PubMed ID: 16619131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Inverse analysis of constitutive models: biological soft tissues.
    Lei F; Szeri AZ
    J Biomech; 2007; 40(4):936-40. PubMed ID: 16730739
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Three-dimensional finite-difference bidomain modeling of homogeneous cardiac tissue on a data-parallel computer.
    Saleheen HI; Claessen PD; Ng KT
    IEEE Trans Biomed Eng; 1997 Feb; 44(2):200-4. PubMed ID: 9214799
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A viscoelastic model of mechanically induced and spontaneous contractions of vascular smooth muscle.
    Hudetz AG; Monos E
    Acta Physiol Hung; 1985; 65(2):109-23. PubMed ID: 3984755
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The use of finite element methods and genetic algorithms in search of an optimal fabric reinforced porous graft system.
    Yeoman MS; Reddy BD; Bowles HC; Zilla P; Bezuidenhout D; Franz T
    Ann Biomed Eng; 2009 Nov; 37(11):2266-87. PubMed ID: 19657741
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.