These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 16967325)

  • 81. Identification of carotid plaque tissue properties using an experimental-numerical approach.
    Heiland VM; Forsell C; Roy J; Hedin U; Gasser TC
    J Mech Behav Biomed Mater; 2013 Nov; 27():226-38. PubMed ID: 23790614
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A Comparison of Finite Element-Based Inversion Algorithms, Local Frequency Estimation, and Direct Inversion Approach Used in MRE.
    Honarvar M; Sahebjavaher RS; Rohling R; Salcudean SE
    IEEE Trans Med Imaging; 2017 Aug; 36(8):1686-1698. PubMed ID: 28333623
    [TBL] [Abstract][Full Text] [Related]  

  • 83. An inverse approach for the mechanical characterisation of vascular tissues via a generalised rule of mixtures.
    Bellomo FJ; Oller S; Nallim LG
    Comput Methods Biomech Biomed Engin; 2012; 15(12):1257-62. PubMed ID: 23140323
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A robust numerical solution to reconstruct a globally relative shear modulus distribution from strain measurements.
    Sumi C; Nakayama K
    IEEE Trans Med Imaging; 1998 Jun; 17(3):419-28. PubMed ID: 9735905
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A constrained von Mises distribution to describe fiber organization in thin soft tissues.
    Gouget CL; Girard MJ; Ethier CR
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):475-82. PubMed ID: 21739088
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Elastic parameter identification of three-dimensional soft tissue based on deep neural network.
    Hu Z; Liao S; Zhou J; Chen Q; Wu R
    J Mech Behav Biomed Mater; 2024 Jul; 155():106542. PubMed ID: 38631100
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Adjoint multi-start-based estimation of cardiac hyperelastic material parameters using shear data.
    Balaban G; Alnæs MS; Sundnes J; Rognes ME
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1509-1521. PubMed ID: 27008196
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A semi-empirical nonlinear viscoelastic model of the arterial wall.
    Hudetz AG; Monos E
    Acta Physiol Hung; 1986; 67(2):173-91. PubMed ID: 3739741
    [TBL] [Abstract][Full Text] [Related]  

  • 89. A finite element model for performing intravascular ultrasound elastography of human atherosclerotic coronary arteries.
    Baldewsing RA; de Korte CL; Schaar JA; Mastik F; van der Steen AF
    Ultrasound Med Biol; 2004 Jun; 30(6):803-13. PubMed ID: 15219960
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A vision-based technique for objective assessment of burn scars.
    Tsap LV; Goldgof DB; Sarkar S; Powers PS
    IEEE Trans Med Imaging; 1998 Aug; 17(4):620-33. PubMed ID: 9845317
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A strain energy function for arteries accounting for wall composition and structure.
    Zulliger MA; Fridez P; Hayashi K; Stergiopulos N
    J Biomech; 2004 Jul; 37(7):989-1000. PubMed ID: 15165869
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Cupping: from a biomechanical perspective.
    Tham LM; Lee HP; Lu C
    J Biomech; 2006; 39(12):2183-93. PubMed ID: 16126216
    [TBL] [Abstract][Full Text] [Related]  

  • 93. A new finite element method for inverse problems in structural analysis: application to atherosclerotic plaque elasticity reconstruction.
    Bouvier A; Deleaval F; Doyley MM; Tacheau A; Finet G; Le Floc'h S; Cloutier G; Pettigrew RI; Ohayon J
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():16-7. PubMed ID: 25074142
    [No Abstract]   [Full Text] [Related]  

  • 94. Using numerical approximation as an intermediate step in analytical derivations: some observations from biomechanics.
    Taylor Z; Miller K
    J Biomech; 2005 Dec; 38(12):2497-502. PubMed ID: 16214499
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Modeling of human artery tissue with probabilistic approach.
    Xiong L; Chui CK; Fu Y; Teo CL; Li Y
    Comput Biol Med; 2015 Apr; 59():152-159. PubMed ID: 25748681
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Inverse parameter fitting of biological tissues: a response surface approach.
    Einstein DR; Freed AD; Stander N; Fata B; Vesely I
    Ann Biomed Eng; 2005 Dec; 33(12):1819-30. PubMed ID: 16389530
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Determination of material models for arterial walls from uniaxial extension tests and histological structure.
    Holzapfel GA
    J Theor Biol; 2006 Jan; 238(2):290-302. PubMed ID: 16043190
    [TBL] [Abstract][Full Text] [Related]  

  • 98. On the potential of the Lagrangian speckle model estimator to characterize atherosclerotic plaques in endovascular elastography: in vitro experiments using an excised human carotid artery.
    Maurice RL; Brusseau E; Finet G; Cloutier G
    Ultrasound Med Biol; 2005 Jan; 31(1):85-91. PubMed ID: 15653234
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Mechanical characterization of 3D printed mimic of human artery affected by atherosclerotic plaque through numerical and experimental methods.
    Guarnera D; Carrera E; Hansen CJ; Maiarù M
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1969-1980. PubMed ID: 34227022
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Computational model for early cardiac looping.
    Ramasubramanian A; Latacha KS; Benjamin JM; Voronov DA; Ravi A; Taber LA
    Ann Biomed Eng; 2006 Aug; 34(8):1655-69. PubMed ID: 16732433
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.