BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 16967510)

  • 1. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo.
    Borday C; Coutinho A; Germon I; Champagnat J; Fortin G
    J Neurobiol; 2006 Oct; 66(12):1285-301. PubMed ID: 16967510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro.
    Eugenín J; von Bernhardi R; Muller KJ; Llona I
    Neuroscience; 2006 Aug; 141(1):223-31. PubMed ID: 16675136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vitamin A deficiency results in the dose-dependent acquisition of anterior character and shortening of the caudal hindbrain of the rat embryo.
    White JC; Highland M; Kaiser M; Clagett-Dame M
    Dev Biol; 2000 Apr; 220(2):263-84. PubMed ID: 10753515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiratory rhythms generated in the lamprey rhombencephalon.
    Martel B; Guimond JC; Gariépy JF; Gravel J; Auclair F; Kolta A; Lund JP; Dubuc R
    Neuroscience; 2007 Aug; 148(1):279-93. PubMed ID: 17618060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The pre-Bötzinger oscillator in the mouse embryo.
    Borday C; Vias C; Autran S; Thoby-Brisson M; Champagnat J; Fortin G
    J Physiol Paris; 2006; 100(5-6):284-9. PubMed ID: 17628453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural tube patterning by Krox20 and emergence of a respiratory control.
    Borday C; Chatonnet F; Thoby-Brisson M; Champagnat J; Fortin G
    Respir Physiol Neurobiol; 2005 Nov; 149(1-3):63-72. PubMed ID: 16203212
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail.
    Kil SH; Streit A; Brown ST; Agrawal N; Collazo A; Zile MH; Groves AK
    Dev Biol; 2005 Sep; 285(1):252-71. PubMed ID: 16039643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways.
    Trainor PA; Sobieszczuk D; Wilkinson D; Krumlauf R
    Development; 2002 Jan; 129(2):433-42. PubMed ID: 11807035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gli2 and Gli3 play distinct roles in the dorsoventral patterning of the mouse hindbrain.
    Lebel M; Mo R; Shimamura K; Hui CC
    Dev Biol; 2007 Feb; 302(1):345-55. PubMed ID: 17026983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ontogeny of central rhythm generation in chicks and rodents.
    Chatonnet F; Borday C; Wrobel L; Thoby-Brisson M; Fortin G; McLean H; Champagnat J
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):37-46. PubMed ID: 16533622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental specification of GABAergic inhibition during development of hindbrain neural networks.
    Fortin G; Jungbluth S; Lumsden A; Champagnat J
    Nat Neurosci; 1999 Oct; 2(10):873-7. PubMed ID: 10491606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mouse-chick neural chimeras.
    Fontaine-Pérus J; Chéraud Y
    Int J Dev Biol; 2005; 49(2-3):349-53. PubMed ID: 15906250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Segmentation of the vertebrate hindbrain: a time-lapse analysis.
    Kulesa PM; Fraser SE
    Int J Dev Biol; 1998; 42(3):385-92. PubMed ID: 9654023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specification of the hindbrain fate in the zebrafish.
    Woo K; Fraser SE
    Dev Biol; 1998 May; 197(2):283-96. PubMed ID: 9630752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Genetic control of rhombencephalon development by Hox genes studied in bird embryo by the quail-chick chimera method].
    Le Douarin NM; Grapin-Botton A
    C R Seances Soc Biol Fil; 1997; 191(1):29-42. PubMed ID: 9181126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential involvement of projection neurons during emergence of spontaneous activity in the developing avian hindbrain.
    Mochida H; Fortin G; Champagnat J; Glover JC
    J Neurophysiol; 2009 Feb; 101(2):591-602. PubMed ID: 19036869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67.
    Tsunekawa N; Arata A; Obata K
    Eur J Neurosci; 2005 Jan; 21(1):173-8. PubMed ID: 15654854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rhombomere interactions control the segmental differentiation of hindbrain neurons.
    Eickholt BJ; Graham A; Lumsden A; Wizenmann A
    Mol Cell Neurosci; 2001 Aug; 18(2):141-8. PubMed ID: 11520176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extracellular calcium induces quiescence of the low-frequency embryonic motor rhythm in the mouse isolated brainstem.
    Meillerais A; Champagnat J; Morin-Surun MP
    J Neurosci Res; 2010 Dec; 88(16):3555-65. PubMed ID: 20936702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.