These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 16967571)

  • 1. Free-energy landscape of alcohol driven coacervation transition in aqueous gelatin solutions.
    Reena AG; Bohidar HB
    J Chem Phys; 2006 Aug; 125(5):054904. PubMed ID: 16967571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic of alcohol-induced simple coacervation in aqueous gelatin solutions.
    Mohanty B; Bohidar HB
    Biomacromolecules; 2003; 4(4):1080-6. PubMed ID: 12857095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-gelatin complex coacervation, UCST and first-order phase transition of coacervate to anisotropic ion gel in 1-methyl-3-octylimidazolium chloride ionic liquid solutions.
    Rawat K; Aswal VK; Bohidar HB
    J Phys Chem B; 2012 Dec; 116(51):14805-16. PubMed ID: 23194173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intermolecular complexation and phase separation in aqueous solutions of oppositely charged biopolymers.
    Singh SS; Siddhanta AK; Meena R; Prasad K; Bandyopadhyay S; Bohidar HB
    Int J Biol Macromol; 2007 Jul; 41(2):185-92. PubMed ID: 17367849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation.
    Pawar N; Bohidar HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036107. PubMed ID: 21230139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanol-induced coacervation in aqueous gelatin solution for constructing nanospheres and networks: Morphology, dynamics and thermal sensitivity.
    Pei Y; Zheng Y; Li Z; Liu J; Zheng X; Tang K; Kaplan DL
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):610-618. PubMed ID: 32911409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of ionic strength on surface-selective patch binding-induced phase separation and coacervation in similarly charged gelatin-agar molecular systems.
    Boral S; Bohidar HB
    J Phys Chem B; 2010 Sep; 114(37):12027-35. PubMed ID: 20809576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface patch binding and mesophase separation in biopolymeric polyelectrolyte-polyampholyte solutions.
    Pathak J; Rawat K; Bohidar HB
    Int J Biol Macromol; 2014 Feb; 63():29-37. PubMed ID: 24161686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface patch binding induced intermolecular complexation and phase separation in aqueous solutions of similarly charged gelatin-chitosan molecules.
    Gupta AN; Bohidar HB; Aswal VK
    J Phys Chem B; 2007 Aug; 111(34):10137-45. PubMed ID: 17676887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small ion effects on self-coacervation phenomena in block polyampholytes.
    Danielsen SPO; McCarty J; Shea JE; Delaney KT; Fredrickson GH
    J Chem Phys; 2019 Jul; 151(3):034904. PubMed ID: 31325933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of protein-protein complex coacervation and biphasic release of salbutamol sulfate from coacervate matrix.
    Tiwari A; Bindal S; Bohidar HB
    Biomacromolecules; 2009 Jan; 10(1):184-9. PubMed ID: 19072040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of sodium carboxymethylcellulose-gelatin complex coacervation by viscosity, turbidity and coacervate wet weight and volume measurements.
    Koh GL; Tucker IG
    J Pharm Pharmacol; 1988 Apr; 40(4):233-6. PubMed ID: 2900300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Condensation, complex coacervation, and overcharging during DNA-gelatin interactions in aqueous solutions.
    Arfin N; Bohidar HB
    J Phys Chem B; 2012 Nov; 116(44):13192-9. PubMed ID: 23072460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of phase separation in systems exhibiting simple coacervation.
    Gupta A; Bohidar HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011507. PubMed ID: 16089970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of persistence length on binding of DNA to polyions and overcharging of their intermolecular complexes in aqueous and in 1-methyl-3-octyl imidazolium chloride ionic liquid solutions.
    Rawat K; Pathak J; Bohidar HB
    Phys Chem Chem Phys; 2013 Aug; 15(29):12262-73. PubMed ID: 23775068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of gelatin nano/submicron particles by binary nonsolvent aided coacervation (BNAC) method.
    Patra S; Basak P; Tibarewala DN
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():310-318. PubMed ID: 26652378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular design of self-coacervation phenomena in block polyampholytes.
    Danielsen SPO; McCarty J; Shea JE; Delaney KT; Fredrickson GH
    Proc Natl Acad Sci U S A; 2019 Apr; 116(17):8224-8232. PubMed ID: 30948640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perfluorinated Alcohols Induce Complex Coacervation in Mixed Surfactants.
    Jenkins SI; Collins CM; Khaledi MG
    Langmuir; 2016 Mar; 32(10):2321-30. PubMed ID: 26881998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of the early development of the thermodynamics of the complex coacervation phase separation.
    Veis A
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):2-11. PubMed ID: 21377640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface behavior and bulk properties of aqueous chitosan and type-B gelatin solutions for effective emulsion formulation.
    Roy JC; Salaün F; Giraud S; Ferri A; Guan J
    Carbohydr Polym; 2017 Oct; 173():202-214. PubMed ID: 28732859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.