These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1696773)

  • 1. The effects of intrauterine growth retardation on the development of neuroglia in fetal guinea pigs. An immunohistochemical and an ultrastructural study.
    Nitsos I; Rees S
    Int J Dev Neurosci; 1990; 8(3):233-44. PubMed ID: 1696773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myelin-forming oligodendrocytes of developing mouse spinal cord: immunocytochemical and ultrastructural studies.
    Choi BH
    J Neuropathol Exp Neurol; 1986 Sep; 45(5):513-24. PubMed ID: 2427660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structural and neurochemical development of the fetal guinea pig retina and optic nerve in experimental growth retardation.
    Rees S; Bainbridge A
    Int J Dev Neurosci; 1992; 10(1):93-108. PubMed ID: 1376956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minisegments of newborn rat optic nerves in vitro: gliogenesis and myelination.
    Omlin FX; Waldmeyer J
    Exp Brain Res; 1986; 65(1):189-99. PubMed ID: 2433143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of delayed myelination by oligodendrocytes and Schwann cells on the macromolecular structure of axonal membrane in rat spinal cord.
    Black JA; Waxman SG; Sims TJ; Gilmore SA
    J Neurocytol; 1986 Dec; 15(6):745-61. PubMed ID: 3819778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction of oligodendrocytes and astrocytes to trauma and implantation. A combined autoradiographic and immunohistochemical study.
    Ludwin SK
    Lab Invest; 1985 Jan; 52(1):20-30. PubMed ID: 2578200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chronic placental insufficiency in the fetal guinea pig affects neurochemical and neuroglial development but not neuronal numbers in the brainstem: a new method for combined stereology and immunohistochemistry.
    Tolcos M; Rees S
    J Comp Neurol; 1997 Mar; 379(1):99-112. PubMed ID: 9057115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of glial fibrillary acidic protein by immature oligodendroglia and its implications.
    Choi BH; Kim RC
    J Neuroimmunol; 1985 Jun; 8(4-6):215-35. PubMed ID: 2409106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of glial development in the human foetal spinal cord during the late first and second trimester.
    Weidenheim KM; Epshteyn I; Rashbaum WK; Lyman WD
    J Neurocytol; 1994 Jun; 23(6):343-53. PubMed ID: 7522270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediate glial cells and reactive astrocytes revisited. A study in organotypic tissue culture.
    Munoz-Garcia D; Ludwin SK
    J Neuroimmunol; 1985 Jun; 8(4-6):237-54. PubMed ID: 2409107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spongy degeneration in the zitter rat: ultrastructural and immunohistochemical studies.
    Kondo A; Sendoh S; Miyata K; Takamatsu J
    J Neurocytol; 1995 Jul; 24(7):533-44. PubMed ID: 7561961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Undernutrition in the developing rat: effect upon myelination.
    Krigman MR; Hogan EL
    Brain Res; 1976 May; 107(2):239-55. PubMed ID: 1268726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal cell relationships in Jimpy mice: electron microscopic and immunocytochemical findings.
    Omlin FX; Anders JJ
    J Neurocytol; 1983 Oct; 12(5):767-84. PubMed ID: 6644355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of glial fibrillary acidic protein in immature oligodendroglia.
    Choi BH; Kim RC
    Science; 1984 Jan; 223(4634):407-9. PubMed ID: 6197755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rumpshaker: an X-linked mutation causing hypomyelination: developmental differences in myelination and glial cells between the optic nerve and spinal cord.
    Fanarraga ML; Griffiths IR; McCulloch MC; Barrie JA; Kennedy PG; Brophy PJ
    Glia; 1992; 5(3):161-70. PubMed ID: 1375190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human fetal myelinated organotypic cultures.
    Lyman WD; Hatch WC; Pousada E; Stephney G; Rashbaum WK; Weidenheim KM
    Brain Res; 1992 Dec; 599(1):34-44. PubMed ID: 1493548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit.
    Remahl S; Hilderbrand C
    J Neurocytol; 1990 Jun; 19(3):313-28. PubMed ID: 2391536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphologic analysis of axo-glial membrane specializations in the demyelinated central nervous system.
    Soffer D; Raine CS
    Brain Res; 1980 Mar; 186(2):301-13. PubMed ID: 7357456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendrocyte survival and function in the long-lived strain of the myelin deficient rat.
    Duncan ID; Nadon NL; Hoffman RL; Lunn KF; Csiza C; Wells MR
    J Neurocytol; 1995 Oct; 24(10):745-62. PubMed ID: 8586995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Problems encountered when immunocytochemistry is used for quantitative glial cell identification in autoradiographic studies of cell proliferation in the brain of the unlesioned adult mouse.
    Korr H; Horsmann C; Schürmann M; Delaunoy JP; Labourdette G
    Cell Tissue Res; 1994 Oct; 278(1):85-95. PubMed ID: 7525071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.