These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16967933)

  • 1. Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins.
    Spagnuolo CC; Vermeij RJ; Jares-Erijman EA
    J Am Chem Soc; 2006 Sep; 128(37):12040-1. PubMed ID: 16967933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity.
    Martin BR; Giepmans BN; Adams SR; Tsien RY
    Nat Biotechnol; 2005 Oct; 23(10):1308-14. PubMed ID: 16155565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs.
    Fessenden JD; Mahalingam M
    PLoS One; 2013; 8(5):e64686. PubMed ID: 23724080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photostability and spectral properties of fluorinated fluoresceins and their biarsenical derivatives: a combined experimental and theoretical study.
    Spagnuolo CC; Massad W; Miskoski S; Menendez GO; García NA; Jares-Erijman EA
    Photochem Photobiol; 2009; 85(5):1082-8. PubMed ID: 19500295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging FRET standards by steady-state fluorescence and lifetime methods.
    Domingo B; Sabariegos R; Picazo F; Llopis J
    Microsc Res Tech; 2007 Dec; 70(12):1010-21. PubMed ID: 17722057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy.
    Robia SL; Flohr NC; Thomas DD
    Biochemistry; 2005 Mar; 44(11):4302-11. PubMed ID: 15766259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent labeling of tetracysteine-tagged proteins in intact cells.
    Hoffmann C; Gaietta G; Zürn A; Adams SR; Terrillon S; Ellisman MH; Tsien RY; Lohse MJ
    Nat Protoc; 2010 Sep; 5(10):1666-77. PubMed ID: 20885379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins.
    Adams SR; Tsien RY
    Nat Protoc; 2008; 3(9):1527-34. PubMed ID: 18772880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The biarsenical dye Lumio exhibits a reduced ability to specifically detect tetracysteine-containing proteins within live cells.
    Hearps AC; Pryor MJ; Kuusisto HV; Rawlinson SM; Piller SC; Jans DA
    J Fluoresc; 2007 Nov; 17(6):593-7. PubMed ID: 17805945
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ReAsH/FlAsH labeling and image analysis of tetracysteine sensor proteins in cells.
    Irtegun S; Ramdzan YM; Mulhern TD; Hatters DM
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21897361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Arylazide- and Diazirine-Containing CrAsH-EDT2 Photoaffinity Probes.
    Syeda SS; Rice D; Hook DJ; Heckert LL; Georg GI
    Arch Pharm (Weinheim); 2016 Apr; 349(4):233-41. PubMed ID: 26948688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical control of FlAsH labeling of proteins.
    Wilkins BJ; Yang X; Cropp TA
    Bioorg Med Chem Lett; 2009 Aug; 19(15):4296-8. PubMed ID: 19500980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications.
    Adams SR; Campbell RE; Gross LA; Martin BR; Walkup GK; Yao Y; Llopis J; Tsien RY
    J Am Chem Soc; 2002 May; 124(21):6063-76. PubMed ID: 12022841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of fluorescein as a platform for finely tunable fluorescence probes.
    Urano Y; Kamiya M; Kanda K; Ueno T; Hirose K; Nagano T
    J Am Chem Soc; 2005 Apr; 127(13):4888-94. PubMed ID: 15796553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast fluorescence resonance energy transfer in a reverse micelle: excitation wavelength dependence.
    Mondal SK; Ghosh S; Sahu K; Mandal U; Bhattacharyya K
    J Chem Phys; 2006 Dec; 125(22):224710. PubMed ID: 17176157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biarsenical-tetracysteine motif as a fluorescent tag for detection in capillary electrophoresis.
    Kottegoda S; Aoto PC; Sims CE; Allbritton NL
    Anal Chem; 2008 Jul; 80(14):5358-66. PubMed ID: 18522433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time detection of SNARE complex assembly with FRET using the tetracysteine system.
    Varlamov O
    Methods Mol Biol; 2014; 1174():49-55. PubMed ID: 24947373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes.
    Chen B; Cao H; Yan P; Mayer MU; Squier TC
    Bioconjug Chem; 2007; 18(4):1259-65. PubMed ID: 17569496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of oligonucleotides by PNA-peptide conjugates recognizing the biarsenical fluorescein complex FlAsH-EDT
    Piras L; Avitabile C; D'Andrea LD; Saviano M; Romanelli A
    Biochem Biophys Res Commun; 2017 Nov; 493(1):126-131. PubMed ID: 28919425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.