BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16967954)

  • 1. Direct electrochemistry of endonuclease III in the presence and absence of DNA.
    Gorodetsky AA; Boal AK; Barton JK
    J Am Chem Soc; 2006 Sep; 128(37):12082-3. PubMed ID: 16967954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA-bound redox activity of DNA repair glycosylases containing [4Fe-4S] clusters.
    Boal AK; Yavin E; Lukianova OA; O'Shea VL; David SS; Barton JK
    Biochemistry; 2005 Jun; 44(23):8397-407. PubMed ID: 15938629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry using self-assembled DNA monolayers on highly oriented pyrolytic graphite.
    Gorodetsky AA; Barton JK
    Langmuir; 2006 Aug; 22(18):7917-22. PubMed ID: 16922584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic-complementary peptide-modified highly ordered pyrolytic graphite electrode for biosensor application.
    Yang H; Fung SY; Sun W; Mikkelsen S; Pritzker M; Chen P
    Biotechnol Prog; 2008; 24(4):964-71. PubMed ID: 19194905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling into the base pair stack is necessary for DNA-mediated electrochemistry.
    Gorodetsky AA; Green O; Yavin E; Barton JK
    Bioconjug Chem; 2007; 18(5):1434-41. PubMed ID: 17580927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for iron-sulfur clusters in DNA repair.
    Lukianova OA; David SS
    Curr Opin Chem Biol; 2005 Apr; 9(2):145-51. PubMed ID: 15811798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry of the [4Fe4S] Cluster in Base Excision Repair Proteins: Tuning the Redox Potential with DNA.
    Bartels PL; Zhou A; Arnold AR; Nuñez NN; Crespilho FN; David SS; Barton JK
    Langmuir; 2017 Mar; 33(10):2523-2530. PubMed ID: 28219007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA interaction with palladium chelates of biogenic polyamines using atomic force microscopy and voltammetric characterization.
    Corduneanu O; Chiorcea-Paquim AM; Diculescu V; Fiuza SM; Marques MP; Oliveira-Brett AM
    Anal Chem; 2010 Feb; 82(4):1245-52. PubMed ID: 20088546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrical probe of protein-DNA interactions on DNA-modified surfaces.
    Boon EM; Salas JE; Barton JK
    Nat Biotechnol; 2002 Mar; 20(3):282-6. PubMed ID: 11875430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct electron transfer from graphite and functionalized gold electrodes to T1 and T2/T3 copper centers of bilirubin oxidase.
    Ramírez P; Mano N; Andreu R; Ruzgas T; Heller A; Gorton L; Shleev S
    Biochim Biophys Acta; 2008 Oct; 1777(10):1364-9. PubMed ID: 18639515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization and modulation of the DNA cleavage efficiency of type III restriction endonuclease EcoP15I in its interaction with two sites in the DNA target.
    Möncke-Buchner E; Rothenberg M; Reich S; Wagenführ K; Matsumura H; Terauchi R; Krüger DH; Reuter M
    J Mol Biol; 2009 Apr; 387(5):1309-19. PubMed ID: 19250940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of mismatched DNA hybridization via a redox-active diviologen bound in the PNA-DNA minor groove.
    Hvastkovs EG; Buttry DA
    Langmuir; 2009 Apr; 25(6):3839-44. PubMed ID: 19275185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning force microscopy of DNA translocation by the Type III restriction enzyme EcoP15I.
    Reich S; Gössl I; Reuter M; Rabe JP; Krüger DH
    J Mol Biol; 2004 Aug; 341(2):337-43. PubMed ID: 15276827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural domains in the type III restriction endonuclease EcoP15I: characterization by limited proteolysis, mass spectrometry and insertional mutagenesis.
    Wagenführ K; Pieper S; Mackeldanz P; Linscheid M; Krüger DH; Reuter M
    J Mol Biol; 2007 Feb; 366(1):93-102. PubMed ID: 17156795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of GC and HOPG with diazonium, amine, azide, and olefin derivatives.
    Tanaka M; Sawaguchi T; Sato Y; Yoshioka K; Niwa O
    Langmuir; 2011 Jan; 27(1):170-8. PubMed ID: 21117684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric Oxide Modulates Endonuclease III Redox Activity by a 800 mV Negative Shift upon [Fe
    Ekanger LA; Oyala PH; Moradian A; Sweredoski MJ; Barton JK
    J Am Chem Soc; 2018 Sep; 140(37):11800-11810. PubMed ID: 30145881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electron transfer reactions between human ceruloplasmin and electrodes.
    Haberska K; Vaz-Domínguez C; De Lacey AL; Dagys M; Reimann CT; Shleev S
    Bioelectrochemistry; 2009 Sep; 76(1-2):34-41. PubMed ID: 19535300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipoic acid-palladium complex interaction with DNA, voltammetric and AFM characterization.
    Corduneanu O; Chiorcea-Paquim AM; Garnett M; Oliveira-Brett AM
    Talanta; 2009 Mar; 77(5):1843-53. PubMed ID: 19159808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate binding modulates the reduction potential of DNA photolyase.
    Gindt YM; Schelvis JP; Thoren KL; Huang TH
    J Am Chem Soc; 2005 Aug; 127(30):10472-3. PubMed ID: 16045318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport by molecular motion of redox-DNA strands: unexpectedly slow rotational dynamics of 20-mer ds-DNA chains end-grafted onto surfaces via C6 linkers.
    Anne A; Demaille C
    J Am Chem Soc; 2008 Jul; 130(30):9812-23. PubMed ID: 18593158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.