These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

752 related articles for article (PubMed ID: 16967962)

  • 1. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.
    Calimet N; Ullmann GM
    J Mol Biol; 2004 Jun; 339(3):571-89. PubMed ID: 15147843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M
    J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Key role of active-site water molecules in bacteriorhodopsin proton-transfer reactions.
    Bondar AN; Baudry J; Suhai S; Fischer S; Smith JC
    J Phys Chem B; 2008 Nov; 112(47):14729-41. PubMed ID: 18973373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic study of the proton pumping mechanism in bovine heart cytochrome C oxidase.
    Popović DM; Stuchebrukhov AA
    J Am Chem Soc; 2004 Feb; 126(6):1858-71. PubMed ID: 14871119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding structure and function in the light-driven proton pump bacteriorhodopsin.
    Lanyi JK
    J Struct Biol; 1998 Dec; 124(2-3):164-78. PubMed ID: 10049804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key role of electrostatic interactions in bacteriorhodopsin proton transfer.
    Bondar AN; Fischer S; Smith JC; Elstner M; Suhai S
    J Am Chem Soc; 2004 Nov; 126(44):14668-77. PubMed ID: 15521787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential proton-release channels in bacteriorhodopsin.
    Chaumont A; Baer M; Mathias G; Marx D
    Chemphyschem; 2008 Dec; 9(18):2751-8. PubMed ID: 19035376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pK(a) Calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin.
    Spassov VZ; Luecke H; Gerwert K; Bashford D
    J Mol Biol; 2001 Sep; 312(1):203-19. PubMed ID: 11545597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model for proton transport coupled to protein conformational change: application to proton pumping in the bacteriorhodopsin photocycle.
    Ferreira AM; Bashford D
    J Am Chem Soc; 2006 Dec; 128(51):16778-90. PubMed ID: 17177428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proton transfers in the cytoplasmic domain of bacteriorhodopsin are facilitated by a cluster of interacting residues.
    Brown LS; Yamazaki Y; Maeda A; Sun L; Needleman R; Lanyi JK
    J Mol Biol; 1994 Jun; 239(3):401-14. PubMed ID: 8201621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix deformation is coupled to vectorial proton transport in the photocycle of bacteriorhodopsin.
    Royant A; Edman K; Ursby T; Pebay-Peyroula E; Landau EM; Neutze R
    Nature; 2000 Aug; 406(6796):645-8. PubMed ID: 10949307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water dynamics simulation as a tool for probing proton transfer pathways in a heptahelical membrane protein.
    Kandt C; Gerwert K; Schlitter J
    Proteins; 2005 Feb; 58(3):528-37. PubMed ID: 15609339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and energetic determinants of primary proton transfer in bacteriorhodopsin.
    Bondar AN; Smith JC; Fischer S
    Photochem Photobiol Sci; 2006 Jun; 5(6):547-52. PubMed ID: 16761083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of proton transfer in bacteriorhodopsin.
    Lee YS; Krauss M
    J Am Chem Soc; 2004 Feb; 126(7):2225-30. PubMed ID: 14971958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating the proton transfer in gramicidin A by a sequential dynamical Monte Carlo method.
    Till MS; Essigke T; Becker T; Ullmann GM
    J Phys Chem B; 2008 Oct; 112(42):13401-10. PubMed ID: 18826179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin.
    Sato Y; Hata M; Neya S; Hoshino T
    J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.