BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16967980)

  • 1. Staurosporine and rebeccamycin aglycones are assembled by the oxidative action of StaP, StaC, and RebC on chromopyrrolic acid.
    Howard-Jones AR; Walsh CT
    J Am Chem Soc; 2006 Sep; 128(37):12289-98. PubMed ID: 16967980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD.
    Howard-Jones AR; Walsh CT
    Biochemistry; 2005 Dec; 44(48):15652-63. PubMed ID: 16313168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and functional modification of StaC and RebC, which are involved in the pyrrole oxidation of indolocarbazole biosynthesis.
    Asamizu S; Shiro Y; Igarashi Y; Nagano S; Onaka H
    Biosci Biotechnol Biochem; 2011; 75(11):2184-93. PubMed ID: 22056432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonenzymatic oxidative steps accompanying action of the cytochrome P450 enzymes StaP and RebP in the biosynthesis of staurosporine and rebeccamycin.
    Howard-Jones AR; Walsh CT
    J Am Chem Soc; 2007 Sep; 129(36):11016-7. PubMed ID: 17705392
    [No Abstract]   [Full Text] [Related]  

  • 5. An unusual role for a mobile flavin in StaC-like indolocarbazole biosynthetic enzymes.
    Goldman PJ; Ryan KS; Hamill MJ; Howard-Jones AR; Walsh CT; Elliott SJ; Drennan CL
    Chem Biol; 2012 Jul; 19(7):855-65. PubMed ID: 22840773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rebeccamycin and staurosporine biosynthesis: insight into the mechanisms of the flavin-dependent monooxygenases RebC and StaC.
    Groom K; Bhattacharya A; Zechel DL
    Chembiochem; 2011 Feb; 12(3):396-400. PubMed ID: 21290541
    [No Abstract]   [Full Text] [Related]  

  • 7. Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton.
    Makino M; Sugimoto H; Shiro Y; Asamizu S; Onaka H; Nagano S
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11591-6. PubMed ID: 17606921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the biosynthetic gene cluster of rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243.
    Onaka H; Taniguchi S; Igarashi Y; Furumai T
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):127-38. PubMed ID: 12619684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic trapping in the rebeccamycin biosynthetic enzyme RebC.
    Ryan KS; Howard-Jones AR; Hamill MJ; Elliott SJ; Walsh CT; Drennan CL
    Proc Natl Acad Sci U S A; 2007 Sep; 104(39):15311-6. PubMed ID: 17873060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic assembly of the bis-indole core of rebeccamycin.
    Nishizawa T; Grüschow S; Jayamaha DH; Nishizawa-Harada C; Sherman DH
    J Am Chem Soc; 2006 Jan; 128(3):724-5. PubMed ID: 16417354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electron transfer activation of chromopyrrolic acid by cytochrome p450 en route to the formation of an antitumor indolocarbazole derivative: theory supports experiment.
    Wang Y; Hirao H; Chen H; Onaka H; Nagano S; Shaik S
    J Am Chem Soc; 2008 Jun; 130(23):7170-1. PubMed ID: 18481854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous expression, purification, and characterization of an l-ornithine N(5)-hydroxylase involved in pyoverdine siderophore biosynthesis in Pseudomonas aeruginosa.
    Ge L; Seah SY
    J Bacteriol; 2006 Oct; 188(20):7205-10. PubMed ID: 17015659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Obligatory intermolecular electron-transfer from FAD to FMN in dimeric P450BM-3.
    Kitazume T; Haines DC; Estabrook RW; Chen B; Peterson JA
    Biochemistry; 2007 Oct; 46(42):11892-901. PubMed ID: 17902705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosynthesis of indolocarbazole and goadsporin, two different heterocyclic antibiotics produced by actinomycetes.
    Onaka H
    Biosci Biotechnol Biochem; 2009 Oct; 73(10):2149-55. PubMed ID: 19809190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput screens based on NAD(P)H depletion.
    Glieder A; Meinhold P
    Methods Mol Biol; 2003; 230():157-70. PubMed ID: 12824579
    [No Abstract]   [Full Text] [Related]  

  • 16. Theoretical and experimental studies of the conversion of chromopyrrolic acid to an antitumor derivative by cytochrome P450 StaP: the catalytic role of water molecules.
    Wang Y; Chen H; Makino M; Shiro Y; Nagano S; Asamizu S; Onaka H; Shaik S
    J Am Chem Soc; 2009 May; 131(19):6748-62. PubMed ID: 19385626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial biosynthesis of antitumor indolocarbazole compounds.
    Sánchez C; Zhu L; Braña AF; Salas AP; Rohr J; Méndez C; Salas JA
    Proc Natl Acad Sci U S A; 2005 Jan; 102(2):461-6. PubMed ID: 15625109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis.
    Sánchez C; Braña AF; Méndez C; Salas JA
    Chembiochem; 2006 Aug; 7(8):1231-40. PubMed ID: 16874749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potentiometric and further kinetic characterization of the flavin-binding domain of Saccharomyces cerevisiae flavocytochrome b2. Inhibition by anions binding in the active site.
    Cénas N; Lê KH; Terrier M; Lederer F
    Biochemistry; 2007 Apr; 46(15):4661-70. PubMed ID: 17373777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering biosynthetic pathways to generate antitumor indolocarbazole derivatives.
    Sánchez C; Méndez C; Salas JA
    J Ind Microbiol Biotechnol; 2006 Jul; 33(7):560-8. PubMed ID: 16491358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.