These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 16968010)

  • 1. A nanofluidic railroad switch for DNA.
    Riehn R; Austin RH; Sturm JC
    Nano Lett; 2006 Sep; 6(9):1973-6. PubMed ID: 16968010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoretic trapping of DNA origami.
    Kuzyk A; Yurke B; Toppari JJ; Linko V; Törmä P
    Small; 2008 Apr; 4(4):447-50. PubMed ID: 18350556
    [No Abstract]   [Full Text] [Related]  

  • 3. Label free detection of nucleic acids by modulating nanochannel surfaces.
    Crisalli P; McCallum C; Pennathur S
    Chem Commun (Camb); 2015 Feb; 51(12):2335-8. PubMed ID: 25562395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective driving force applied on DNA inside a solid-state nanopore.
    Lu B; Hoogerheide DP; Zhao Q; Yu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011921. PubMed ID: 23005466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coverage control of DNA crystals grown by silica assistance.
    Lee J; Kim S; Kim J; Lee CW; Roh Y; Park SH
    Angew Chem Int Ed Engl; 2011 Sep; 50(39):9145-9. PubMed ID: 21919147
    [No Abstract]   [Full Text] [Related]  

  • 6. Rectified ion transport through concentration gradient in homogeneous silica nanochannels.
    Cheng LJ; Guo LJ
    Nano Lett; 2007 Oct; 7(10):3165-71. PubMed ID: 17894519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-state migration of DNA in a structured microchannel.
    Streek M; Schmid F; Duong TT; Anselmetti D; Ros A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011905. PubMed ID: 15697628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic concentration of DNA polymers in nanofluidic channels.
    Stein D; Deurvorst Z; van der Heyden FH; Koopmans WJ; Gabel A; Dekker C
    Nano Lett; 2010 Mar; 10(3):765-72. PubMed ID: 20151696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling flow direction in nanochannels by electric field strength.
    Gao X; Zhao T; Li Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023017. PubMed ID: 26382513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomolecule detection via target mediated nanoparticle aggregation and dielectrophoretic impedance measurement.
    Costanzo PJ; Liang E; Patten TE; Collins SD; Smith RL
    Lab Chip; 2005 Jun; 5(6):606-10. PubMed ID: 15915252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface patterning of (bio)molecules onto the inner wall of fused-silica capillary tubes.
    Dendane N; Hoang A; Renaudet O; Vinet F; Dumy P; Defrancq E
    Lab Chip; 2008 Dec; 8(12):2161-3. PubMed ID: 19023481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of double-strand DNA through a silicon oxide nanopore.
    Storm AJ; Chen JH; Zandbergen HW; Dekker C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051903. PubMed ID: 16089567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable non-equilibrium gating of flexible DNA nanochannels in response to transport flux.
    Mao Y; Chang S; Yang S; Ouyang Q; Jiang L
    Nat Nanotechnol; 2007 Jun; 2(6):366-71. PubMed ID: 18654309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free detection of conformational changes in switchable DNA nanostructures with microwave microfluidics.
    Stelson AC; Liu M; Little CAE; Long CJ; Orloff ND; Stephanopoulos N; Booth JC
    Nat Commun; 2019 Mar; 10(1):1174. PubMed ID: 30862776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA stretch during electrophoresis due to a step change in mobility.
    Underhill PT; Doyle PS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011805. PubMed ID: 17677482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic stretching of tethered DNA.
    Ferree S; Blanch HW
    Biophys J; 2003 Oct; 85(4):2539-46. PubMed ID: 14507716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric and dielectrophoretic properties of DNA.
    Hölzel R
    IET Nanobiotechnol; 2009 Jun; 3(2):28-45. PubMed ID: 19485551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundamentals of Electrophoresis 2018.
    Dutta P
    Electrophoresis; 2018 Mar; 39(5-6):689. PubMed ID: 29493828
    [No Abstract]   [Full Text] [Related]  

  • 20. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke.
    Niman CS; Zuckermann MJ; Balaz M; Tegenfeldt JO; Curmi PM; Forde NR; Linke H
    Nanoscale; 2014 Dec; 6(24):15008-19. PubMed ID: 25367216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.