These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 16968042)
1. Influences of interfacial resistances on gas transport through carbon nanotube membranes. Newsome DA; Sholl DS Nano Lett; 2006 Sep; 6(9):2150-3. PubMed ID: 16968042 [TBL] [Abstract][Full Text] [Related]
2. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Kim S; Jinschek JR; Chen H; Sholl DS; Marand E Nano Lett; 2007 Sep; 7(9):2806-11. PubMed ID: 17685662 [TBL] [Abstract][Full Text] [Related]
3. Nanopumping using carbon nanotubes. Insepov Z; Wolf D; Hassanein A Nano Lett; 2006 Sep; 6(9):1893-5. PubMed ID: 16967997 [TBL] [Abstract][Full Text] [Related]
4. Fast mass transport through carbon nanotube membranes. Verweij H; Schillo MC; Li J Small; 2007 Dec; 3(12):1996-2004. PubMed ID: 18022891 [TBL] [Abstract][Full Text] [Related]
5. Porous graphene as the ultimate membrane for gas separation. Jiang DE; Cooper VR; Dai S Nano Lett; 2009 Dec; 9(12):4019-24. PubMed ID: 19995080 [TBL] [Abstract][Full Text] [Related]
6. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. Majumder M; Chopra N; Hinds BJ ACS Nano; 2011 May; 5(5):3867-77. PubMed ID: 21500837 [TBL] [Abstract][Full Text] [Related]
7. Why are carbon nanotubes fast transporters of water? Joseph S; Aluru NR Nano Lett; 2008 Feb; 8(2):452-8. PubMed ID: 18189436 [TBL] [Abstract][Full Text] [Related]
8. Intrinsic ion selectivity of narrow hydrophobic pores. Song C; Corry B J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185 [TBL] [Abstract][Full Text] [Related]
9. Hydrodynamic properties of carbon nanotubes. Walther JH; Werder T; Jaffe RL; Koumoutsakos P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):062201. PubMed ID: 15244641 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Shi Z; Zhang W; Zhang F; Liu X; Wang D; Jin J; Jiang L Adv Mater; 2013 May; 25(17):2422-7. PubMed ID: 23494957 [TBL] [Abstract][Full Text] [Related]
14. Structure and dynamics of confined water inside narrow carbon nanotubes. Mukherjee B; Maiti PK; Dasgupta C; Sood AK J Nanosci Nanotechnol; 2007 Jun; 7(6):1796-9. PubMed ID: 17654942 [TBL] [Abstract][Full Text] [Related]
15. Flexible orientation control of ultralong single-walled carbon nanotubes by gas flow. Liu Y; Hong J; Zhang Y; Cui R; Wang J; Tan W; Li Y Nanotechnology; 2009 May; 20(18):185601. PubMed ID: 19420617 [TBL] [Abstract][Full Text] [Related]
16. Filtration-wet transferred transparent conducting films of mm long carbon nanotubes grown using water-assisted chemical vapor deposition. Patole SP; Shin DW; Fugetsu B; Yoo JB J Nanosci Nanotechnol; 2013 Nov; 13(11):7413-7. PubMed ID: 24245265 [TBL] [Abstract][Full Text] [Related]
17. Nanotube fluidic junctions: internanotube attogram mass transport through walls. Dong L; Tao X; Hamdi M; Zhang L; Zhang X; Ferreira A; Nelson BJ Nano Lett; 2009 Jan; 9(1):210-4. PubMed ID: 19072302 [TBL] [Abstract][Full Text] [Related]
18. Gated ion transport through dense carbon nanotube membranes. Yu M; Funke HH; Falconer JL; Noble RD J Am Chem Soc; 2010 Jun; 132(24):8285-90. PubMed ID: 20504021 [TBL] [Abstract][Full Text] [Related]
19. Polymer-nanotube-enzyme composites as active antifouling films. Asuri P; Karajanagi SS; Kane RS; Dordick JS Small; 2007 Jan; 3(1):50-3. PubMed ID: 17294467 [No Abstract] [Full Text] [Related]