These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16968042)

  • 21. Water transport inside a single-walled carbon nanotube driven by a temperature gradient.
    Shiomi J; Maruyama S
    Nanotechnology; 2009 Feb; 20(5):055708. PubMed ID: 19417367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nucleic acid transport through carbon nanotube membranes.
    Yeh IC; Hummer G
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12177-82. PubMed ID: 15302940
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging the passage of a single hydrocarbon chain through a nanopore.
    Koshino M; Solin N; Tanaka T; Isobe H; Nakamura E
    Nat Nanotechnol; 2008 Oct; 3(10):595-7. PubMed ID: 18838997
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modelling the nucleation and chirality selection of carbon nanotubes.
    Li L; Reich S; Robertson J
    J Nanosci Nanotechnol; 2006 May; 6(5):1290-7. PubMed ID: 16792355
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled transport of DNA through a Y-shaped carbon nanotube in a solid membrane.
    Luan B; Zhou B; Huynh T; Zhou R
    Nanoscale; 2014 Oct; 6(19):11479-83. PubMed ID: 25154639
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction.
    Yasuda S; Futaba DN; Yamada T; Satou J; Shibuya A; Takai H; Arakawa K; Yumura M; Hata K
    ACS Nano; 2009 Dec; 3(12):4164-70. PubMed ID: 19947579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial heat flow in carbon nanotube suspensions.
    Huxtable ST; Cahill DG; Shenogin S; Xue L; Ozisik R; Barone P; Usrey M; Strano MS; Siddons G; Shim M; Keblinski P
    Nat Mater; 2003 Nov; 2(11):731-4. PubMed ID: 14556001
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simulations of electrophoretic RNA transport through transmembrane carbon nanotubes.
    Zimmerli U; Koumoutsakos P
    Biophys J; 2008 Apr; 94(7):2546-57. PubMed ID: 18178663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Permeation of binary gas mixtures in ultramicroporous membranes.
    da Costa JC; Lu GQ; Rudolph V
    J Nanosci Nanotechnol; 2004 Mar; 4(3):265-9. PubMed ID: 15233087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectroscopic evidence and molecular simulation investigation of the pi-pi interaction between pyrene molecules and carbon nanotubes.
    Zhang Y; Yuan S; Zhou W; Xu J; Li Y
    J Nanosci Nanotechnol; 2007 Jul; 7(7):2366-75. PubMed ID: 17663254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flow-dependent directional growth of carbon nanotube forests by chemical vapor deposition.
    Kim H; Kim KS; Kang J; Park YC; Chun KY; Boo JH; Kim YJ; Hong BH; Choi JB
    Nanotechnology; 2011 Mar; 22(9):095303. PubMed ID: 21270486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon arc plasma as a source of nanotubes: emission spectroscopy and formation mechanism.
    Lange H; Huczko A; Sioda M; Louchev O
    J Nanosci Nanotechnol; 2003; 3(1-2):51-62. PubMed ID: 12908230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane gas diffusion measurements with MRI.
    Zhang Z; Ouriadov AV; Willson C; Balcom BJ
    J Magn Reson; 2005 Oct; 176(2):215-22. PubMed ID: 16054409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Foam films as thin liquid gas separation membranes.
    Ramanathan M; Müller HJ; Möhwald H; Krastev R
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):633-7. PubMed ID: 21314136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanopores: a makeover for membranes.
    Baker LA; Bird SP
    Nat Nanotechnol; 2008 Feb; 3(2):73-4. PubMed ID: 18654462
    [No Abstract]   [Full Text] [Related]  

  • 36. Carbon nanotube filters.
    Srivastava A; Srivastava ON; Talapatra S; Vajtai R; Ajayan PM
    Nat Mater; 2004 Sep; 3(9):610-4. PubMed ID: 15286755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of the anodic arc discharge and conditions for single-wall carbon nanotube growth.
    Keidar M; Waas AM; Raitses Y; Waldorff EI
    J Nanosci Nanotechnol; 2006 May; 6(5):1309-14. PubMed ID: 16792357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equilibrium and kinetics: water confined in carbon nanotubes as one-dimensional lattice gas.
    Zhou X; Li CQ; Iwamoto M
    J Chem Phys; 2004 Oct; 121(16):7996-8002. PubMed ID: 15485262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tailoring the water structure and transport in nanotubes with tunable interiors.
    Ruiz L; Wu Y; Keten S
    Nanoscale; 2015 Jan; 7(1):121-32. PubMed ID: 25407508
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controllable synthesis of single-walled carbon nanotube framework membranes and capsules.
    Song C; Kwon T; Han JH; Shandell M; Strano MS
    Nano Lett; 2009 Dec; 9(12):4279-84. PubMed ID: 19842680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.