These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16968099)

  • 1. Epicatechin carbonyl-trapping reactions in aqueous maillard systems: Identification and structural elucidation.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2006 Sep; 54(19):7311-8. PubMed ID: 16968099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: quenching of C2, C3, and C4 sugar fragments.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2005 May; 53(10):4130-5. PubMed ID: 15884850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems.
    Totlani VM; Peterson DG
    J Agric Food Chem; 2007 Jan; 55(2):414-20. PubMed ID: 17227073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-reactivity relationships of flavan-3-ols on product generation in aqueous glucose/glycine model systems.
    Noda Y; Peterson DG
    J Agric Food Chem; 2007 May; 55(9):3686-91. PubMed ID: 17394338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of hydroxycinnamic acid-maillard reaction products in low-moisture baking model systems.
    Jiang D; Chiaro C; Maddali P; Prabhu KS; Peterson DG
    J Agric Food Chem; 2009 Nov; 57(21):9932-43. PubMed ID: 19817410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of adducts formed in the reactions of malonaldehyde-glyoxal and malonaldehyde-methylglyoxal with adenosine and calf thymus DNA.
    Pluskota-Karwatka D; Pawłowicz AJ; Bruszyńska M; Greszkiewicz A; Latajka R; Kronberg L
    Chem Biodivers; 2010 Apr; 7(4):959-74. PubMed ID: 20397229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions.
    Lo CY; Li S; Tan D; Pan MH; Sang S; Ho CT
    Mol Nutr Food Res; 2006 Dec; 50(12):1118-28. PubMed ID: 17103374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of the amino acid in glucose-glycine melanoidins investigated by solid-state nuclear magnetic resonance (NMR).
    Fang X; Schmidt-Rohr K
    J Agric Food Chem; 2009 Nov; 57(22):10701-11. PubMed ID: 19919118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure elucidation of procyanidin oligomers by low-temperature 1H NMR spectroscopy.
    Esatbeyoglu T; Jaschok-Kentner B; Wray V; Winterhalter P
    J Agric Food Chem; 2011 Jan; 59(1):62-9. PubMed ID: 21141823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping of Carbonyl Compounds by Epicatechin: Reaction Kinetics and Identification of Epicatechin Adducts in Stored UHT Milk.
    Zhu H; Poojary MM; Andersen ML; Lund MN
    J Agric Food Chem; 2020 Jul; 68(29):7718-7726. PubMed ID: 32597649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal decomposition of specifically phosphorylated D-glucoses and their role in the control of the Maillard reaction.
    Yaylayan VA; Machiels D; Istasse L
    J Agric Food Chem; 2003 May; 51(11):3358-66. PubMed ID: 12744667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a colorless anthocyanin-flavan-3-ol dimer containing both carbon-carbon and ether interflavanoid linkages by NMR and mass spectrometry.
    Remy-Tanneau S; Le Guernevé C; Meudec E; Cheynier V
    J Agric Food Chem; 2003 Jun; 51(12):3592-7. PubMed ID: 12769530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems.
    Amrein TM; Andres L; Manzardo GG; Amado R
    J Agric Food Chem; 2006 Dec; 54(26):10253-61. PubMed ID: 17177568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alkyl and other major structures in (13)C-labeled glucose-glycine melanoidins identified by solid-state nuclear magnetic resonance.
    Fang X; Schmidt-Rohr K
    J Agric Food Chem; 2011 Jan; 59(2):481-90. PubMed ID: 21189015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adducts Derived from (-)-Epigallocatechin Gallate-Amadori Rearrangement Products in Aqueous Reaction Systems: Characterization, Formation, and Thermolysis.
    Yu J; Cui H; Zhang Q; Hayat K; Zhan H; Yu J; Jia C; Zhang X; Ho CT
    J Agric Food Chem; 2020 Sep; 68(39):10902-10911. PubMed ID: 32893622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epicatechin Adducting with 5-Hydroxymethylfurfural as an Inhibitory Mechanism against Acrylamide Formation in Maillard Reactions.
    Qi Y; Zhang H; Zhang H; Wu G; Wang L; Qian H; Qi X
    J Agric Food Chem; 2018 Nov; 66(47):12536-12543. PubMed ID: 30396275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Quercetin and Its Methylglyoxal Adducts on the Formation of α-Dicarbonyl Compounds in a Lysine/Glucose Model System.
    Liu G; Xia Q; Lu Y; Zheng T; Sang S; Lv L
    J Agric Food Chem; 2017 Mar; 65(10):2233-2239. PubMed ID: 28233503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of phloretin and phloridzin on the formation of Maillard reaction products in aqueous models composed of glucose and L-lysine or its derivatives.
    Ma J; Peng X; Ng KM; Che CM; Wang M
    Food Funct; 2012 Feb; 3(2):178-86. PubMed ID: 22159289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of 2-acetylfuran formation between ribose and glucose in the Maillard reaction.
    Wang Y; Ho CT
    J Agric Food Chem; 2008 Dec; 56(24):11997-2001. PubMed ID: 19090713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein inhibits advanced glycation end product formation by trapping methylglyoxal.
    Lv L; Shao X; Chen H; Ho CT; Sang S
    Chem Res Toxicol; 2011 Apr; 24(4):579-86. PubMed ID: 21344933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.