These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 16968113)

  • 1. The distinct signaling mechanisms of microbial sensory rhodopsins in Archaea, Eubacteria and Eukarya.
    Jung KH
    Photochem Photobiol; 2007; 83(1):63-9. PubMed ID: 16968113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
    Klare JP; Chizhov I; Engelhard M
    Results Probl Cell Differ; 2008; 45():73-122. PubMed ID: 17898961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multitalented microbial sensory rhodopsins.
    Spudich JL
    Trends Microbiol; 2006 Nov; 14(11):480-7. PubMed ID: 17005405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a signaling complex composed of sensory rhodopsin I and its cognate transducer protein from the eubacterium Salinibacter ruber.
    Sudo Y; Okada A; Suzuki D; Inoue K; Irieda H; Sakai M; Fujii M; Furutani Y; Kandori H; Homma M
    Biochemistry; 2009 Oct; 48(42):10136-45. PubMed ID: 19778064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I.
    Suzuki D; Furutani Y; Inoue K; Kikukawa T; Sakai M; Fujii M; Kandori H; Homma M; Sudo Y
    J Mol Biol; 2009 Sep; 392(1):48-62. PubMed ID: 19560470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal water molecules of archaeal rhodopsins (Review).
    Furutani Y; Kandori H
    Mol Membr Biol; 2002; 19(4):257-65. PubMed ID: 12512772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive activity in chimeras and deletions localize sensory rhodopsin II/HtrII signal relay to the membrane-inserted domain.
    Sasaki J; Nara T; Spudich EN; Spudich JL
    Mol Microbiol; 2007 Dec; 66(6):1321-30. PubMed ID: 17986191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossing the borders: archaeal rhodopsins go bacterial.
    Gärtner W; Losi A
    Trends Microbiol; 2003 Sep; 11(9):405-7. PubMed ID: 13678852
    [No Abstract]   [Full Text] [Related]  

  • 10. Eubacterial rhodopsins - unique photosensors and diverse ion pumps.
    Brown LS
    Biochim Biophys Acta; 2014 May; 1837(5):553-61. PubMed ID: 23748216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-driven ion-translocating rhodopsins in marine bacteria.
    Inoue K; Kato Y; Kandori H
    Trends Microbiol; 2015 Feb; 23(2):91-8. PubMed ID: 25432080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural divergence and functional versatility of the rhodopsin superfamily.
    Kouyama T; Murakami M
    Photochem Photobiol Sci; 2010 Nov; 9(11):1458-65. PubMed ID: 20931138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroscopic evidence for the formation of an N intermediate during the photocycle of sensory rhodopsin II (phoborhodopsin) from Natronobacterium pharaonis.
    Tateishi Y; Abe T; Tamogami J; Nakao Y; Kikukawa T; Kamo N; Unno M
    Biochemistry; 2011 Mar; 50(12):2135-43. PubMed ID: 21299224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural changes of Salinibacter sensory rhodopsin I upon formation of the K and M photointermediates.
    Suzuki D; Sudo Y; Furutani Y; Takahashi H; Homma M; Kandori H
    Biochemistry; 2008 Dec; 47(48):12750-9. PubMed ID: 18991393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane signal transduction in archaeal phototaxis: the sensory rhodopsin II-transducer complex studied by electron paramagnetic resonance spectroscopy.
    Klare JP; Bordignon E; Engelhard M; Steinhoff HJ
    Eur J Cell Biol; 2011 Sep; 90(9):731-9. PubMed ID: 21684631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The archaeal sensory rhodopsin II/transducer complex: a model for transmembrane signal transfer.
    Klare JP; Gordeliy VI; Labahn J; Büldt G; Steinhoff HJ; Engelhard M
    FEBS Lett; 2004 Apr; 564(3):219-24. PubMed ID: 15111099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substitution of Pro206 and Ser86 residues in the retinal binding pocket of Anabaena sensory rhodopsin is not sufficient for proton pumping function.
    Choi AR; Kim SY; Yoon SR; Bae K; Jung KH
    J Microbiol Biotechnol; 2007 Jan; 17(1):138-45. PubMed ID: 18051365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.
    Pinhassi J; DeLong EF; Béjà O; González JM; Pedrós-Alió C
    Microbiol Mol Biol Rev; 2016 Dec; 80(4):929-54. PubMed ID: 27630250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation and light activation in membrane-embedded sensory rhodopsin II as seen by solid-state NMR spectroscopy.
    Etzkorn M; Seidel K; Li L; Martell S; Geyer M; Engelhard M; Baldus M
    Structure; 2010 Mar; 18(3):293-300. PubMed ID: 20223212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visual and archaeal rhodopsins: similarities, differences and controversy.
    Bryl K
    Cell Mol Biol Lett; 2003; 8(2):285-96. PubMed ID: 12813562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.