These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 16968113)
41. Effect of polarization on the opsin shift in rhodopsins. 1. A combined QM/QM/MM model for bacteriorhodopsin and pharaonis sensory rhodopsin II. Wanko M; Hoffmann M; Frauenheim T; Elstner M J Phys Chem B; 2008 Sep; 112(37):11462-7. PubMed ID: 18698712 [TBL] [Abstract][Full Text] [Related]
42. Ion-pumping microbial rhodopsin protein classification by machine learning approach. Selvaraj MK; Thakur A; Kumar M; Pinnaka AK; Suri CR; Siddhardha B; Elumalai SP BMC Bioinformatics; 2023 Jan; 24(1):29. PubMed ID: 36707759 [TBL] [Abstract][Full Text] [Related]
43. Electron crystallographic analysis of two-dimensional crystals of sensory rhodopsin II: a 6.9 A projection structure. Kunji ER; Spudich EN; Grisshammer R; Henderson R; Spudich JL J Mol Biol; 2001 Apr; 308(2):279-93. PubMed ID: 11327767 [TBL] [Abstract][Full Text] [Related]
44. Tryptophan 171 in Pharaonis phoborhodopsin (sensory rhodopsin II) interacts with the chromophore retinal and its substitution with alanine or threonine slowed down the decay of M- and O-intermediate. Iwasa T; Abe E; Yakura Y; Yoshida H; Kamo N Photochem Photobiol; 2007; 83(2):328-35. PubMed ID: 17029563 [TBL] [Abstract][Full Text] [Related]
45. Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore. Sudo Y; Furutani Y; Wada A; Ito M; Kamo N; Kandori H J Am Chem Soc; 2005 Nov; 127(46):16036-7. PubMed ID: 16287285 [TBL] [Abstract][Full Text] [Related]
46. Transducer binding establishes localized interactions to tune sensory rhodopsin II. Cisneros DA; Oberbarnscheidt L; Pannier A; Klare JP; Helenius J; Engelhard M; Oesterhelt F; Muller DJ Structure; 2008 Aug; 16(8):1206-13. PubMed ID: 18682222 [TBL] [Abstract][Full Text] [Related]
47. Functional characterization of sensory rhodopsin II from Halobacterium salinarum expressed in Escherichia coli. Mironova OS; Efremov RG; Person B; Heberle J; Budyak IL; Büldt G; Schlesinger R FEBS Lett; 2005 Jun; 579(14):3147-51. PubMed ID: 15919078 [TBL] [Abstract][Full Text] [Related]
48. Folding and assembly of proteorhodopsin. Klyszejko AL; Shastri S; Mari SA; Grubmüller H; Muller DJ; Glaubitz C J Mol Biol; 2008 Feb; 376(1):35-41. PubMed ID: 18155728 [TBL] [Abstract][Full Text] [Related]
49. Mechanism of photosensory adaptation in Halobacterium salinarium. Marwan W; Bibikov SI; Montrone M; Oesterhelt D J Mol Biol; 1995 Mar; 246(4):493-9. PubMed ID: 7877170 [TBL] [Abstract][Full Text] [Related]
50. Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis. Yagasaki J; Suzuki D; Ihara K; Inoue K; Kikukawa T; Sakai M; Fujii M; Homma M; Kandori H; Sudo Y Biochemistry; 2010 Feb; 49(6):1183-90. PubMed ID: 20067303 [TBL] [Abstract][Full Text] [Related]
51. Structural analysis of the phototactic transducer protein HtrII linker region from Natronomonas pharaonis. Hayashi K; Sudo Y; Jee J; Mishima M; Hara H; Kamo N; Kojima C Biochemistry; 2007 Dec; 46(50):14380-90. PubMed ID: 18001143 [TBL] [Abstract][Full Text] [Related]
52. Linker region of a halobacterial transducer protein interacts directly with its sensor retinal protein. Sudo Y; Okuda H; Yamabi M; Fukuzaki Y; Mishima M; Kamo N; Kojima C Biochemistry; 2005 Apr; 44(16):6144-52. PubMed ID: 15835902 [TBL] [Abstract][Full Text] [Related]
53. Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. Hoffmann M; Wanko M; Strodel P; König PH; Frauenheim T; Schulten K; Thiel W; Tajkhorshid E; Elstner M J Am Chem Soc; 2006 Aug; 128(33):10808-18. PubMed ID: 16910676 [TBL] [Abstract][Full Text] [Related]
54. Demonstration of a sensory rhodopsin in eubacteria. Jung KH; Trivedi VD; Spudich JL Mol Microbiol; 2003 Mar; 47(6):1513-22. PubMed ID: 12622809 [TBL] [Abstract][Full Text] [Related]
55. Functional assay of light-induced ion-transport by rhodopsins. Hososhima S; Abe-Yoshizumi R; Kandori H Methods Enzymol; 2023; 679():331-342. PubMed ID: 36682869 [TBL] [Abstract][Full Text] [Related]
56. Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Moukhametzianov R; Klare JP; Efremov R; Baeken C; Göppner A; Labahn J; Engelhard M; Büldt G; Gordeliy VI Nature; 2006 Mar; 440(7080):115-9. PubMed ID: 16452929 [TBL] [Abstract][Full Text] [Related]
57. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Hoff WD; Jung KH; Spudich JL Annu Rev Biophys Biomol Struct; 1997; 26():223-58. PubMed ID: 9241419 [TBL] [Abstract][Full Text] [Related]
58. New insights into the evolutionary history of type 1 rhodopsins. Ruiz-González MX; Marín I J Mol Evol; 2004 Mar; 58(3):348-58. PubMed ID: 15045490 [TBL] [Abstract][Full Text] [Related]