These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 16968114)
1. Photochemistry of organic iron(III) complexing ligands in oceanic systems. Barbeau K Photochem Photobiol; 2006; 82(6):1505-16. PubMed ID: 16968114 [TBL] [Abstract][Full Text] [Related]
2. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Barbeau K; Rue EL; Bruland KW; Butler A Nature; 2001 Sep; 413(6854):409-13. PubMed ID: 11574885 [TBL] [Abstract][Full Text] [Related]
3. Iron-mediated photochemical decomposition of methylmercury in an arctic Alaskan lake. Hammerschmidt CR; Fitzgerald WF Environ Sci Technol; 2010 Aug; 44(16):6138-43. PubMed ID: 20704210 [TBL] [Abstract][Full Text] [Related]
4. Effect of model ligands on iron redox speciation in natural waters using flow injection with luminol chemiluminescence detection. Ussher SJ; Yaqoob M; Achterberg EP; Nabi A; Worsfold PJ Anal Chem; 2005 Apr; 77(7):1971-8. PubMed ID: 15801726 [TBL] [Abstract][Full Text] [Related]
5. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. Hopkinson BM; Morel FM Biometals; 2009 Aug; 22(4):659-69. PubMed ID: 19343508 [TBL] [Abstract][Full Text] [Related]
6. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater. Fujii M; Rose AL; Waite TD; Omura T Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605 [TBL] [Abstract][Full Text] [Related]
7. Photochemical production of methane in natural waters: implications for its present and past oceanic source. Bange HW; Uher G Chemosphere; 2005 Jan; 58(2):177-83. PubMed ID: 15571749 [TBL] [Abstract][Full Text] [Related]
8. Interactions between mercury and dissolved organic matter--a review. Ravichandran M Chemosphere; 2004 Apr; 55(3):319-31. PubMed ID: 14987930 [TBL] [Abstract][Full Text] [Related]
9. Coupled biogeochemical cycling of iron and manganese as mediated by microbial siderophores. Duckworth OW; Bargar JR; Sposito G Biometals; 2009 Aug; 22(4):605-13. PubMed ID: 19238560 [TBL] [Abstract][Full Text] [Related]
10. Photochemical cycling of iron mediated by dicarboxylates: special effect of malonate. Wang Z; Chen X; Ji H; Ma W; Chen C; Zhao J Environ Sci Technol; 2010 Jan; 44(1):263-8. PubMed ID: 20000366 [TBL] [Abstract][Full Text] [Related]
11. Vibrioferrin, an unusual marine siderophore: iron binding, photochemistry, and biological implications. Amin SA; Green DH; Küpper FC; Carrano CJ Inorg Chem; 2009 Dec; 48(23):11451-8. PubMed ID: 19821595 [TBL] [Abstract][Full Text] [Related]
12. Photochemistry of iron in aquatic environments. Lueder U; Jørgensen BB; Kappler A; Schmidt C Environ Sci Process Impacts; 2020 Jan; 22(1):12-24. PubMed ID: 31904051 [TBL] [Abstract][Full Text] [Related]
13. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter. Bligh MW; Waite TD Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668 [TBL] [Abstract][Full Text] [Related]
14. New insight into photochemistry of ferrioxalate. Pozdnyakov IP; Kel OV; Plyusnin VF; Grivin VP; Bazhin NM J Phys Chem A; 2008 Sep; 112(36):8316-22. PubMed ID: 18707071 [TBL] [Abstract][Full Text] [Related]
15. Effect of dissolved organic matter on the growth of algae, Pseudokirchneriella subcapitata, in Korean lakes: the importance of complexation reactions. Lee J; Park JH; Shin YS; Lee BC; Chang NI; Cho J; Kim SD Ecotoxicol Environ Saf; 2009 Feb; 72(2):335-43. PubMed ID: 18313752 [TBL] [Abstract][Full Text] [Related]
16. Design of iron chelators: syntheses and iron (III) complexing abilities of tripodal tris-bidentate ligands. d'Hardemare Adu M; Torelli S; Serratrice G; Pierre JL Biometals; 2006 Aug; 19(4):349-66. PubMed ID: 16841245 [TBL] [Abstract][Full Text] [Related]
17. Marine siderophores and microbial iron mobilization. Butler A Biometals; 2005 Aug; 18(4):369-74. PubMed ID: 16158229 [TBL] [Abstract][Full Text] [Related]
18. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH. Sun J; Mao JD; Gong H; Lan Y J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002 [TBL] [Abstract][Full Text] [Related]
19. Role of dissolved organic matter composition on the photoreduction of Cr(VI) to Cr(III) in the presence of iron. Gaberell M; Chin YP; Hug SJ; Sulzberger B Environ Sci Technol; 2003 Oct; 37(19):4403-9. PubMed ID: 14572092 [TBL] [Abstract][Full Text] [Related]
20. Measured rates of fluoride/metal association correlate with rates of superoxide/metal reactions for Fe(III)EDTA(H2O)- and related complexes. Summers JS; Baker JB; Meyerstein D; Mizrahi A; Zilbermann I; Cohen H; Wilson CM; Jones JR J Am Chem Soc; 2008 Feb; 130(5):1727-34. PubMed ID: 18186636 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]