These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16968809)

  • 41. Recent advances in bioluminescence resonance energy transfer technologies to study GPCR heteromerization.
    Ayoub MA; Pfleger KD
    Curr Opin Pharmacol; 2010 Feb; 10(1):44-52. PubMed ID: 19897419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dimerization of the melanocortin 4 receptor: a study using bioluminescence resonance energy transfer.
    Nickolls SA; Maki RA
    Peptides; 2006 Feb; 27(2):380-7. PubMed ID: 16406142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of protein-protein interactions using bioluminescence resonance energy transfer.
    Pfleger KD
    Methods Mol Biol; 2009; 574():173-83. PubMed ID: 19685308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Upconversion nanoparticle-based ligase-assisted method for specific and sensitive detection of T790M mutation in epidermal growth factor receptor.
    Wang P; Joshi P; Alazemi A; Zhang P
    Biosens Bioelectron; 2014 Dec; 62():120-6. PubMed ID: 24995386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extended bioluminescence resonance energy transfer (eBRET) for monitoring prolonged protein-protein interactions in live cells.
    Pfleger KD; Dromey JR; Dalrymple MB; Lim EM; Thomas WG; Eidne KA
    Cell Signal; 2006 Oct; 18(10):1664-70. PubMed ID: 16492395
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies.
    Prinz A; Diskar M; Herberg FW
    Chembiochem; 2006 Jul; 7(7):1007-12. PubMed ID: 16755626
    [No Abstract]   [Full Text] [Related]  

  • 47. New Horizons on Molecular Pharmacology Applied to Drug Discovery: When Resonance Overcomes Radioligand Binding.
    Pernomian L; Gomes MS; Moreira JD; da Silva CHTP; Rosa JMC; Cardoso CRB
    Curr Radiopharm; 2017; 10(1):16-20. PubMed ID: 28183248
    [TBL] [Abstract][Full Text] [Related]  

  • 48. EGFR signaling and pharmacology in oncology revealed with innovative BRET-based biosensors.
    Gross F; Mancini A; Breton B; Kobayashi H; Pereira PHS; Le Gouill C; Bouvier M; Schann S; Leroy X; Sabbagh L
    Commun Biol; 2024 Mar; 7(1):250. PubMed ID: 38429428
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Subtle conformational changes between CX3CR1 genetic variants as revealed by resonance energy transfer assays.
    Darbandi-Tehrani K; Hermand P; Carvalho S; Dorgham K; Couvineau A; Lacapère JJ; Combadière C; Deterre P
    FASEB J; 2010 Nov; 24(11):4585-98. PubMed ID: 20667981
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preformed oligomeric epidermal growth factor receptors undergo an ectodomain structure change during signaling.
    Martin-Fernandez M; Clarke DT; Tobin MJ; Jones SV; Jones GR
    Biophys J; 2002 May; 82(5):2415-27. PubMed ID: 11964230
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The new era of bioluminescence resonance energy transfer technology.
    De A
    Curr Pharm Biotechnol; 2011 Apr; 12(4):558-68. PubMed ID: 21342101
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The use of bioluminescence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors.
    Issad T; Blanquart C; Gonzalez-Yanes C
    Expert Opin Ther Targets; 2007 Apr; 11(4):541-56. PubMed ID: 17373883
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A homogenous assay to monitor the activity of the insulin receptor using Bioluminescence Resonance Energy Transfer.
    Issad T; Boute N; Pernet K
    Biochem Pharmacol; 2002 Sep; 64(5-6):813-7. PubMed ID: 12213574
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry.
    Wu N; Dacres H; Anderson A; Trowell SC; Zhu Y
    PLoS One; 2014; 9(2):e88399. PubMed ID: 24551097
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential Effects of Camel Milk on Insulin Receptor Signaling - Toward Understanding the Insulin-Like Properties of Camel Milk.
    Abdulrahman AO; Ismael MA; Al-Hosaini K; Rame C; Al-Senaidy AM; Dupont J; Ayoub MA
    Front Endocrinol (Lausanne); 2016; 7():4. PubMed ID: 26858689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of N361 Glycosylation on Epidermal Growth Factor Receptor Biological Function.
    Lam D; Arroyo B; Liberchuk AN; Wolfe AL
    bioRxiv; 2024 Jul; ():. PubMed ID: 39071333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Epidermal growth factor receptor and its mutant properties].
    Le F; Zhou TC
    Sheng Li Ke Xue Jin Zhan; 1989 Jul; 20(3):206-9. PubMed ID: 2692159
    [No Abstract]   [Full Text] [Related]  

  • 58. Studying RAS Interactions in Live Cells with BRET.
    Columbus J; Turbyville T
    Methods Mol Biol; 2024; 2797():253-260. PubMed ID: 38570465
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of BRET saturation assays for robust and sensitive cytosolic protein-protein interaction studies.
    Besson B; Eun H; Kim S; Windisch MP; Bourhy H; Grailhe R
    Sci Rep; 2022 Jun; 12(1):9987. PubMed ID: 35705637
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Camel and bovine milk lactoferrins activate insulin receptor and its related AKT and ERK1/2 pathways.
    Khan FB; Anwar I; Redwan EM; Palakkott A; Ashraf A; Kizhakkayil J; Iratni R; Maqsood S; Akli Ayoub M
    J Dairy Sci; 2022 Mar; 105(3):1848-1861. PubMed ID: 34955280
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.