BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16969372)

  • 1. Structural basis for macrolactonization by the pikromycin thioesterase.
    Akey DL; Kittendorf JD; Giraldes JW; Fecik RA; Sherman DH; Smith JL
    Nat Chem Biol; 2006 Oct; 2(10):537-42. PubMed ID: 16969372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels.
    Giraldes JW; Akey DL; Kittendorf JD; Sherman DH; Smith JL; Fecik RA
    Nat Chem Biol; 2006 Oct; 2(10):531-6. PubMed ID: 16969373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclization of natural products.
    O'Connor SE
    Nat Chem Biol; 2006 Oct; 2(10):511-2. PubMed ID: 16983382
    [No Abstract]   [Full Text] [Related]  

  • 4. Chemoenzymatic synthesis of the polyketide macrolactone 10-deoxymethynolide.
    Aldrich CC; Venkatraman L; Sherman DH; Fecik RA
    J Am Chem Soc; 2005 Jun; 127(25):8910-1. PubMed ID: 15969542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hidden steps of domain skipping: macrolactone ring size determination in the pikromycin modular polyketide synthase.
    Beck BJ; Yoon YJ; Reynolds KA; Sherman DH
    Chem Biol; 2002 May; 9(5):575-83. PubMed ID: 12031664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative modular polyketide synthase expression controls macrolactone structure.
    Xue Y; Sherman DH
    Nature; 2000 Feb; 403(6769):571-5. PubMed ID: 10676969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interrogating the molecular basis for multiple macrolactone ring formation by the pikromycin polyketide synthase.
    Kittendorf JD; Beck BJ; Buchholz TJ; Seufert W; Sherman DH
    Chem Biol; 2007 Aug; 14(8):944-54. PubMed ID: 17719493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural basis for substrate anchoring, active site selectivity, and product formation by P450 PikC from Streptomyces venezuelae.
    Sherman DH; Li S; Yermalitskaya LV; Kim Y; Smith JA; Waterman MR; Podust LM
    J Biol Chem; 2006 Sep; 281(36):26289-97. PubMed ID: 16825192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae.
    Xue Y; Wilson D; Zhao L; Liu Hw; Sherman DH
    Chem Biol; 1998 Nov; 5(11):661-7. PubMed ID: 9831532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrodiolide formation by the thioesterase of a modular polyketide synthase.
    Zhou Y; Prediger P; Dias LC; Murphy AC; Leadlay PF
    Angew Chem Int Ed Engl; 2015 Apr; 54(17):5232-5. PubMed ID: 25753953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thioesterase domain swapping of a linear polyketide tautomycetin with a macrocyclic polyketide pikromycin in Streptomyces sp. CK4412.
    Tripathi A; Choi SS; Sherman DH; Kim ES
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1189-93. PubMed ID: 27277081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450-mediated hydroxylation is required for polyketide macrolactonization in stambomycin biosynthesis.
    Song L; Laureti L; Corre C; Leblond P; Aigle B; Challis GL
    J Antibiot (Tokyo); 2014 Jan; 67(1):71-6. PubMed ID: 24220109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of erythromycin C-12 hydroxylase, EryK, as a substitute for PikC hydroxylase in pikromycin biosynthesis.
    Lee SK; Basnet DB; Choi CY; Sohng JK; Ahn JS; Yoon YJ
    Bioorg Chem; 2004 Dec; 32(6):549-59. PubMed ID: 15530995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into channel architecture and substrate specificity from crystal structures of two macrocycle-forming thioesterases of modular polyketide synthases.
    Tsai SC; Lu H; Cane DE; Khosla C; Stroud RM
    Biochemistry; 2002 Oct; 41(42):12598-606. PubMed ID: 12379102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Discovery of Fungal Polyene Macrolides via a Postgenomic Approach Reveals a Polyketide Macrocyclization by trans-Acting Thioesterase in Fungi.
    Morishita Y; Zhang H; Taniguchi T; Mori K; Asai T
    Org Lett; 2019 Jun; 21(12):4788-4792. PubMed ID: 31180682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neopikromycin and novapikromycin from the pikromycin biosynthetic pathway of Streptomyces venezuelae.
    Lee SK; Park JW; Kim JW; Jung WS; Park SR; Choi CY; Kim ES; Kim BS; Ahn JS; Sherman DH; Yoon YJ
    J Nat Prod; 2006 May; 69(5):847-9. PubMed ID: 16724858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and biochemical analysis of complex chain-elongation intermediates for interrogation of molecular specificity in the erythromycin and pikromycin polyketide synthases.
    Mortison JD; Kittendorf JD; Sherman DH
    J Am Chem Soc; 2009 Nov; 131(43):15784-93. PubMed ID: 19810731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Single Active Site Mutation in the Pikromycin Thioesterase Generates a More Effective Macrocyclization Catalyst.
    Koch AA; Hansen DA; Shende VV; Furan LR; Houk KN; Jiménez-Osés G; Sherman DH
    J Am Chem Soc; 2017 Sep; 139(38):13456-13465. PubMed ID: 28836768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of novel pikromycin antibiotic products through mutasynthesis.
    Gupta S; Lakshmanan V; Kim BS; Fecik R; Reynolds KA
    Chembiochem; 2008 Jul; 9(10):1609-16. PubMed ID: 18512859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into specificity and catalytic mechanism of amphotericin B/nystatin thioesterase.
    Wang R; Tao W; Liu L; Li C; Bai L; Zhao YL; Shi T
    Proteins; 2021 May; 89(5):558-568. PubMed ID: 33389775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.