These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 16969676)

  • 1. Stumbling with optimal phase reset during gait can prevent a humanoid from falling.
    Nakanishi M; Nomura T; Sato S
    Biol Cybern; 2006 Nov; 95(5):503-15. PubMed ID: 16969676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible functional roles of phase resetting during walking.
    Yamasaki T; Nomura T; Sato S
    Biol Cybern; 2003 Jun; 88(6):468-96. PubMed ID: 12789495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic stability and phase resetting during biped gait.
    Nomura T; Kawa K; Suzuki Y; Nakanishi M; Yamasaki T
    Chaos; 2009 Jun; 19(2):026103. PubMed ID: 19566263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy analysis of human stumbling: the limitations of recovery.
    Forner Cordero A; Koopman HJ; van der Helm FC
    Gait Posture; 2005 Apr; 21(3):243-54. PubMed ID: 15760739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic stability of passive dynamic walking on an irregular surface.
    Su JL; Dingwell JB
    J Biomech Eng; 2007 Dec; 129(6):802-10. PubMed ID: 18067383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An alternative approach to synthesizing bipedal walking.
    van der Kooij H; Jacobs R; Koopman B; van der Helm F
    Biol Cybern; 2003 Jan; 88(1):46-59. PubMed ID: 12545282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase reset and dynamic stability during human gait.
    Yamasaki T; Nomura T; Sato S
    Biosystems; 2003 Sep; 71(1-2):221-32. PubMed ID: 14568223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human foot placement and balance in the sagittal plane.
    Millard M; Wight D; McPhee J; Kubica E; Wang D
    J Biomech Eng; 2009 Dec; 131(12):121001. PubMed ID: 20524724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The control system for the Honda humanoid robot.
    Takenaka T
    Age Ageing; 2006 Sep; 35 Suppl 2():ii24-ii26. PubMed ID: 16926199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive dynamic walking robot that has a deterministic nonlinear gait.
    Kurz MJ; Judkins TN; Arellano C; Scott-Pandorf M
    J Biomech; 2008; 41(6):1310-6. PubMed ID: 18359030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and variability may respond differently to changes in walking speed.
    Li L; Haddad JM; Hamill J
    Hum Mov Sci; 2005 Apr; 24(2):257-67. PubMed ID: 15896862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling posture-dependent leg actuation in sagittal plane locomotion.
    Schmitt J; Clark J
    Bioinspir Biomim; 2009 Dec; 4(4):046005. PubMed ID: 19946148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework.
    Tardieu C; Aurengo A; Tardieu B
    Am J Phys Anthropol; 1993 Apr; 90(4):455-76. PubMed ID: 8476004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations.
    Hak L; Houdijk H; Steenbrink F; Mert A; van der Wurff P; Beek PJ; van Dieën JH
    Gait Posture; 2012 Jun; 36(2):260-4. PubMed ID: 22464635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proprioceptive perturbations of stability during gait.
    Duysens J; Beerepoot VP; Veltink PH; Weerdesteyn V; Smits-Engelsman BC
    Neurophysiol Clin; 2008 Dec; 38(6):399-410. PubMed ID: 19026960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating functional roles of phase resetting in generation of adaptive human bipedal walking with a physiologically based model of the spinal pattern generator.
    Aoi S; Ogihara N; Funato T; Sugimoto Y; Tsuchiya K
    Biol Cybern; 2010 May; 102(5):373-87. PubMed ID: 20217427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of trunk flexion on able-bodied gait.
    Saha D; Gard S; Fatone S
    Gait Posture; 2008 May; 27(4):653-60. PubMed ID: 17920272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular organization of balance control following perturbations during walking.
    Oliveira AS; Gizzi L; Kersting UG; Farina D
    J Neurophysiol; 2012 Oct; 108(7):1895-906. PubMed ID: 22773783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscles that support the body also modulate forward progression during walking.
    Liu MQ; Anderson FC; Pandy MG; Delp SL
    J Biomech; 2006; 39(14):2623-30. PubMed ID: 16216251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.